# Environmental Impact Assessment Report Vol. II(Appendices)

FORMER GALLAHER'S SITE, AIRTON

**FEBRUARY 2020** 

Prepared by: McGILL PLANNING, 45 HERBERT LANE, DUBLIN 2 PH: +353 1 2846464

### In Association with:

Ferreira Architects, Traynor Consulting, Barrett Mahony Consulting Engineers, IAC Archaeology, Mitchell+ Associates, Whitehill Environmental, Tree Management Services, 3D Design, IN2 Engineering Design partnership, and Renaissance Engineering ltd.





Chartered Town Planners

FORMER GALLAHER'S SITE, AIRTON

# CONTENTS

## CHAPTER 5 BIODIVERSITY - APPENDICES

5.1 SPECIES LIST 5.2 PHOTOGRAPHS

### CHAPTER 6 LAND, SOIL & GEOLOGY - APPENDICES

6.1 SITE INVESTIGATION REPORT

### CHAPTER 7HYDROLOGY AND WATER SERVICES - APPENDICES

7.1 EXISTING WATER SUPPLY INFRASTRUCTURE 7.2 MICRO-DRAINAGE CALCULATIONS

### **CHAPTER 9 CLIMATE AIR QUALITY - APPENDICES**

9.1 AMBIENT AIR QUALITY STANDARDS9.2 TRANSPORT INFRASTRUCTURE IRELAND SIGNIFICANCE CRITERIA9.3 DUST MINIMISATION PLAN

### **CHAPTER 11TRAFFIC & TRANSPORTATION - APPENDICES**

11.1 CYCLE NETWORK PLAN11.2 BUS CONNECTS PROPOSAL11.3 BUS CONNECTS ROAD LAYOUT

### **CHAPTER 13WASTE MANAGEMENT - APPENDICES**

13.1 OPERATIONAL WASTE AND RECYCLING MANAGEMENT PLAN

### CHAPTER 14ARCHAEOLOGY AND CULTURAL HERITAGE - APPENDICES

14.1 SMR/RMP SITES WITHIN THE SURROUNDING AREA
14.2 STRAY FINDS WITHIN THE SURROUNDING AREA
14.3 LEGISLATION PROTECTING THE ARCHAEOLOGICAL RESOURCE
14.4 IMPACT ASSESSMENT AND THE CULTURAL HERITAGE RESOURCE
14.5 MITIGATION MEASURES AND THE CULTURAL HERITAGE RESOURCE



# 5 BIODIVERSITY - APPENDICES

# 5.1 SPECIES LIST

| Common Name         | Scientific Name           |
|---------------------|---------------------------|
| Ash                 | Fraxinus excelsior        |
| Autumn hawkbit      | Scorzoneroides autumnalis |
| Barberry            | Berberis                  |
| Black medick        | Medicago lupulina         |
| Bramble             | Rubus fruticosus agg.     |
| Broadleaved Dock    | Rumex obtusifolius        |
| Butterfly bush      | Budleia                   |
| Cat's ear           | Hypochaeris radicata      |
| Cleavers            | Galium aparine            |
| Cock's-foot         | Dactylis glomerata        |
| Coltsfoot           | Tussilago farfara         |
| Common chickweed    | Stellaria media           |
| Cow parsley         | Anthriscus sylvestris     |
| Cowslip             | Primula veris             |
| Common ragwort      | Senecio jacobaea          |
| Bearberry           | Cotoneaster               |
| Blackthorn          | Prunus spinosa            |
| Creeping buttercup  | Ranunculus repens         |
| Creeping cinquefoil | Potentilla reptans        |
| Creeping thistle    | Cirsium arvense           |
| Cuckoo flower       | Cardamine pratensis       |
| Daisy               | Bellis perennis           |
| Dandelion           | Taraxacum officinale      |
| Dog rose            | Rosa canina               |
| Dogwood             | Cornus sp.                |
| Firethorn           | Pyracantha                |
| Germander speedwell | Veronica chamaedrys       |
| Groundsel           | Senecio vulgaris          |
| Hairy bittercress   | Cardamine hirsuta         |
| Hawthorn            | Crategus monogyna         |
| Hazel               | Corylus avellana          |
| Herb Robert         | Geranium robertianum      |

| Hogweed                  | Heracleum sphondylium |
|--------------------------|-----------------------|
| Honeysuckle (ornamental) | Lonicera periclymenum |
| lvy                      | Hedera helix          |
| Lilac                    | Syringa vulgaris      |
| Meadow buttercup         | Ranunculus acris      |
| Meadow grasses           | 5.2Poa sp             |
| Mouse ear                | Cerastium fontanum    |
| Nettle                   | Urtica dioica         |
| Norway maple             | Acer platanoides      |
| Oak                      | Quercus sp            |
| Red clover               | Trifolium pratense    |
| Red fescue               | Festuca rubra.        |
| Rhododendron             | Rhododendron          |
| Rye grasses              | 5.2Lolium sp.         |
| Ribwort plantain         | Pantago lanceolate    |
| Self-heal                | Prunella vulgaris     |
| Sheep's sorrel           | Rumex acetosella      |
| Silver birch             | Betula pendula        |
| Smooth sow thistle       | Sonchus oleraceus     |
| Spear thistle            | Cirsium vulgare       |
| Sycamore                 | Acer pseudoplatanus   |
| Timothy grass            | Phleum pratense       |
| Tufted vetch             | Vicia cracca          |
| Tutsan                   | Hypericum             |
| Whitebeam                | Sorbus sp             |
| White clover             | Trifolium repens      |
| Weeping willow           | Salix babylonica      |
| Willow (Sally)           | Salix cinerea         |
| Willowherb               | Ebilobium sp          |
| Vetches                  | Vicia sp              |
| Vibernum                 | Vibernum              |
| Yarrow                   | Achillea millefolium  |
| Yorkshire fog            | Holcus lanatus        |



# ENVIRONMENTAL IMPACT ASSESSMENT REPORT VOL 2 FORMER GALLAHER'S SITE, AIRTON

# 5.2 PHOTOGRAPHS



Buildings and Surfaces to the West of the Site



Fence and Scattered Trees at the Front of the Site



Grassland Habitat Within the Site







The Existing Building on the Eastern Side of the Site



Driveway and Grassy Verge Habitat



Black Poplar Treeline



# 6 LAND, SOIL & GEOLOGY - APPENDICES

# 6.1 SITE INVESTIGATION REPORT



AIRTON ROAD DEVELOPMENT FOR AIRTON ROAD PROPERTIES

B.M.C.E. CONSULTING ENGINEERS

#### CONTENTS

| 1   | INTRODUCTION |
|-----|--------------|
| п   | FIELDWORK    |
| III | TESTING      |
| ш   | DISCUSSION   |

#### APPENDICES

- I BOREHOLE LOGS
- II ROTARY CORE LOGS / MONITORING DATA
- III TRIAL PIT RECORDS
- IV PLATE BEARING TESTS
- V BRE DIGEST 365 TEST
- VI LABORATORY
  - a. Geotechnical / Rock
  - b. Chemical
- VII SITE PLANS

#### FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

#### General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

#### Standards

The ground investigation works for this project have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (1999), BS 1377 (Parts 1 to 9) and Engineers Ireland Specification & Related Documents for Ground Investigation in Ireland (2006). The following Irish (IS) and European Standards or Norms are referenced:

- IS EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- IS EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- IS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- IS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles

#### Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104mm diameter open-drive tube sampler or Piston Sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strate section.

#### In-Situ Testing.

Standard penetration tests were conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 to obtain the Energy Ratio (E) of each hammer. A calibration certificate is available upon request. The  $E_c$  is defined as the ratio of the actual energy  $E_{max}$  (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy ( $E_{host}$ ) as calculated from the drive weight assembly. The recorded number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

#### Groundwater

The depth of entry of any influx of groundwater is recorded during the course of horing operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to durnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

#### Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2002 and IS EN ISO 14689-1:2004.

Where peat has been encountered during site works, samples have been logged in accordance with the Von Post Classification (ref. Von Post, L. 1992, Sveriges Gologiska Undersoknings torvinventering och nogra av dess hittils vunna resultat (SGU peat inventory and some preliminary results) Svenska Mosskulturforeningens Tidskrift, Jonkoping, Swedden, 36, 1-37 & Hobbs N. B. Mire morphology and the properties of some British and foreign peats. QIEG, Vol. 19, 1986).

#### Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

#### Reporting

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations.

The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points. Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction, mining works or karstification below or close to the site.

This report has been prepared for the project client and the information should not be used without prior written permission. Any recommendations developed in this report specifically relate to the proposed development. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

#### REPORT ON A SITE INVESTIGATION FOR A DEVELOPMENT AT AIRTON ROAD TALLAGHT

FOR AIRTON ROAD PROPERTIES LTD

# BARRETT MAHONY CONSULTING ENGINEERS (BMCE)

Report No. 21813

**JULY 2019** 

**1** Introduction

٠

A new commercial development is proposed for a brownfield site located off Airton Road in Tallaght A large disused commercial building occupies much of the site.

An investigation of sub soil conditions in the area of the development has been carried out by IGSL for Barrett Mahony Consulting Engineers on behalf of Airton Road Properties Ltd.

7 nr.

This work was carried out by IGSL Ltd. following a competitive tender process.

The site investigation included the following elements:

- Boreholes
- \* Rotary Core Drilling 7 nr.
- Trial Pit Excavations 9 nr.
- CBR by Plate Test 7 nr.
- BRE Digest 365 Percolation 3 nr.
- Geotechnical Laboratory Testing
- Environmental Laboratory Testing

This report includes all factual data from field operations and soils laboratory and discusses these findings relative to the proposed new development.

Page 1

#### **II** Fieldwork

The site and the exploratory locations are noted on the drawing enclosed in Appendix VII. This drawing was provided by BMCE.

The site is located off the Airton Road in Tallaght. The area contains a large disused building with surrounding surfaces of concrete, hardcore and grass.

The various elements of the investigation are detailed in the following paragraphs. All field works were supervised by an experienced geotechnical engineer who carefully recorded stratification, recovered samples as required and prepared detailed records.

Each location was scanned electronically (CAT) to ensure that existing services were not damaged. At borehole locations a 1.00 metre deep inspection pit was opened by hand to confirm the absence of services. All locations have been referenced to National Grid and OD levels have been determined.

#### Boreholes

Seven exploratory holes were bored with conventional 200mm cable-tool methods using a Dando Exploratory Rig. Locations were referenced as per the original drawing. One re-bore was taken following shallow refusal on obstruction in BH02.

Detailed geotechnical records are contained in Appendix I to this report - the records give details of stratification, sampling, in-situ testing and groundwater. Note is also taken of any obstructions to normal boring requiring the use of the heavy chisel for advancement. In general it was not possible to recover undisturbed samples because of the high stone/cobble content of the strata encountered.

The findings are relatively consistent. Surface Concrete and Hardcore overlies some generally firm CLAY FILL. The fill extends generally to approximately 1.00 to 1.50 metres, but in three locations to an average depth of 2.80 metres.

Below these upper zones very stiff to hard GLACIAL TILL or BOULDER CLAY is encountered. This comprises stiff BROWN BOULDER CLAY which extends to depth ranging from 1.90 to 2.90 metres. Very stiff to hard BLACK BOULDER CLAY forms the base stratum and all seven boreholes were terminated in this stratum when further advancement was not possible despite the use of the heavy chisel.

Final borehole refusal depths ranged from 5.90 to 8.30 metres, with boulder obstruction noted at each location.

Ground water was encountered as light seepage in several of the boreholes, probably indicative of some granular zones within the generally cohesive boulder clays.

#### **Rotary Core Drilling**

Rotary drilling was scheduled at each location to advance the borehole depths and establish bedrock horizon if practical.

A tracked GEO305 rig was mobilised to drill 90 mm diameter boreholes with 78mm diameter core recovered if possible using triple tube diamond drilling technique.

Detailed drilling records are presented in Appendix II, noting stratification, core recovery and in-situ test data.

The exploratory drill holes penetrated to depths ranging from 12.00 to 13.70 metres BGL. Limestone bedrock was not identified within this depth range.

Recovery of core was generally impractical, however some core of the hard black boulder clay was possible at RC01 and RC05.

The overburden stratum is variously described as very stiff to hard brown and black very gravelly CLAY with cobbles and boulders grading in places to more granular material described as silt or clay-bound sandy GRAVEL.

Standard penetration tests were carried out at intervals in each rotary hole to establish in-situ soil strength. N values are noted in the RH column of the individual records.

Monitoring standpipes were installed in three locations (RC01, RC06 and RC07) to facilitate long term ground water and possible landfill gas concentrations. Each installation was protected by a steel cover. Readings have been taken in the period following the site works. Results are presented with the drilling data in Appendix II.

#### **Trial Pits**

Pits were excavated at nine locations under experienced engineering supervision. Each location was electronically scanned (CAT) to ensure that underground services were not damaged. Detailed trial pit logs are enclosed in Appendix III.

The records confirm the borehole findings. Surface FILL extends to up to 0.90 metres. Firm to stiff brown BOULDER CLAY is then encountered and penetrated to depths ranging from 2.10 to 2.90 metres. Hard black BOULDER CLAY was noted at the base of each excavation with excavator refusal on very hard black clay / boulders generally at 2.80 to 3.00 metres BGL.

Four of the trial excavations were dry, however, some minor water ingress was recorded at varying depth in TPs.01, 02, 04, 08 and 09. All trial excavations were recorded as stable during the short-term investigation period.

Page 2

#### In Situ CBR by Plate Bearing Test

The CBR value of the soils at shallow depth was established at seven trial pit locations locations using Plate Bearing Test Apparatus.

A steel plate is loaded and off-loaded incrementally over two stages and the deflection under load and recovery under off-load is measured by a system of dial gauges. The data is processed and load settlement graphs are prepared. An equivalent CBR value is calculated in accordance with NRA HD25-26/10.

Results are summarised in the following table and details are presented in Appendix IV

#### TABLE A

| Test No. | Depth | CBR at Load Cycle (%) | CBR @ Re-Load (%) |
|----------|-------|-----------------------|-------------------|
| PBT 1    | 0.50  | 12.2                  | 55.5              |
| PBT 2    | 0.50  | 14.5                  | 106.4             |
| PBT 3    | 0.50  | 6.2                   | 21.2              |
| PBT 4    | 0.50  | 6.1                   | 37.3              |
| PBT 5    | 0.50  | 3.7                   | 23.6              |
| PBT 6    | 0.50  | 26.7                  | N/A               |
| PBT 7    | 0.50  | 9.6                   | 50.2              |

#### Percolation Tests (BRE Digest 365)

Infiltration testing was performed at three locations in accordance with BRE Digest 365 'Soakaway Design'. Details are presented in Appendix V. The Test Pits were opened to approximately 2.00 metres deep in gravelly boulder CLAY and detailed logs were prepared.

To obtain a measure of the infiltration rate of the sub-soils, water is poured into the test pit, and records taken of the fall in water level against time. The test is carried out over two cycles following initial soakage.

The infiltration rate is the volume of water dispersed per unit exposed area per unit of time, and is generally expressed as metres/minute or metres/second. In these calculations the exposed area is the sum of the base area and the average internal area of the pit sides over the test duration.

Designs are based on the slowest infiltration rate, which is generally calculated from the final cycle. In each location no fall in water level was measured over the test period and the results confirm the very low permeability of the glacial till or boulder clay.

#### Page 4

#### **III.** Testing

#### (a) In-Situ

Standard penetration tests were carried out in the boreholes at 1.00 metre intervals to establish relative soil strength. In addition SPT values were also established at intervals during rotary drilling. Results are presented in the right hand column of the boring and drilling records and are summarised as follows in Table B.

#### TABLE B

| Stratum / Depth   | N Value Range | Comment                |
|-------------------|---------------|------------------------|
| FILL DEPOSITS     | 3 to 25       | Variable soft to stiff |
| BROWN BOULDER     | CLAY          |                        |
| 1.00 metres BGL   | 18 to 24      | Stiff                  |
| 2.00 metres BGL   | 21 to 44      | Stiff to Very Stiff    |
| BLACK BOULDER C   | LAY           |                        |
| 3.00 metres BGL   | 28 to 55      | Stiff to Hard          |
| 4.00 metres BGL   | 44 to 64      | Hard                   |
| 5.00 metres BGL   | 42 to 56      | Hard                   |
| > 5.00 metres BGL | 40 to 60      | Hard                   |

Refusal of SPT apparatus was recorded on numerous boulders throughout and at the base of the respective boreholes.

#### (b) Laboratory

A programme of laboratory testing was scheduled following completion of site operations. Geotechnical soil testing was carried out by IGSL in it's INAB-Accredited laboratory. Chemical and Environmental testing was carried out in the UK by specialist laboratory. All test results are presented in Appendices VIa and VIb. The test programme includes the following elements:

- Liquid and Plastic Limits / Moisture Content
- PSD Grading by wet sieve and hydrometer.
- Sulphate and pH
- RILTA Environmental Suite

Individual test results are discussed in the following paragraphs.

#### Classification

Thirteen samples from the boreholes and trial pits had index properties established. Results consistently fall into Zones CL and Cl of the standard Classification, indicative of low plasticity sensitive clay matrix soils.

Two samples have been classified as clay-bound sandy GRAVEL. Moisture content for the clay samples range from 8% to 18% while for the gravel samples moisture contents of 3.9 and 8.1% were established.

#### Grading

Wet sieve analysis and hydrometer was used to establish PSD grading curves for samples of the boulder clay. The graphs reflect material graded from the clay to gravel fraction, the straight line pattern of the graphs is typical of the local boulder clays.

Two graphs from the more granular soils confirm coarser grading in the sand gravel fraction with up to 18% of material passing to the fine silt/clay fraction.

#### Sulphate and pH.

Three soil samples were selected for sulphate and pH analysis. Sulphate concentrations (SO4 2:1 extract) of from < 0.010 g/l to 0.076 g/l were established with pH values from 7.6 to 8.6. No special precautions are necessary to protect foundation concrete from sulphate aggression. A sulphate design class of DS-1 (ACEC Classification for Concrete) is indicated for concentrations less than 0.5 g/l.

#### **RILTA Environmental**

Twenty-five soil samples were submitted for detailed environmental analysis to RILTA (WAC) parameters. The results confirm that the soils can be classified as INERT with no elevated contaminant levels recorded on any of the samples submitted. Results indicate that material excavated from this site can be readily disposed of either on-site or to a licensed landfill facility.

No asbestos traces were found during routine screening.

#### **IV. Discussion:**

The new development is to be carried out on a Brownfield site located at Airton Road in Tallaght.

A comprehensive site investigation has been carried out for BMCE and Airton Road Properties Ltd. to establish design parameters for new structures and confirm that the sub soils are not contaminated.

#### Summary Stratification

The findings reflect the general stratification of the Airton Road / Tallaght area where GLACIAL TLL deposits are encountered below superficial surface soils comprising FILL / OLD TOPSOIL / RECENT SANDY CLAY OR SILT.

The glacial till comprises firm to stiff brown sandy gravelly CLAY (Brown Boulder Clay) overlying at an approximate depth of 2.00 metres very stiff to hard black silty gravelly CLAY (Black Boulder Clay or Lodgement Till)

Exploratory holes have been formed using both cable percussion and rotary drilling to depths in excess of 15.00 metres. Bedrock was not encountered within this depth zone.

Pockets or more extensive zones of GRAVEL can typically and randomly occur within the cohesive boulder clay deposits. These are generally water bearing.

Variation in the general grading pattern of the till can also occur, with a higher granular content and increased moisture content classifying the material as either clay or silt bound sandy GRAVEL.

#### Foundations

The made ground encountered over the site area is variable in both composition and compaction and no information is available as to it's origin and method of placement.

This material is therefore regarded as unsuitable as a founding medium and structural loads should be transferred to the competent underling boulder clays.

The following table outlines the allowable bearing pressures available in the various strata at various depths BGL based on in-situ test results, visual assessment of soils during trial pit excavation and consideration of the geotechnical laboratory data.

The characteristics of the local boulder clays are well documented in numerous publications. These have also been considered in preparing this report.

Page 6

#### TABLE C

| Stratum            | Depth                        | Allowable Bearing Pressure    |
|--------------------|------------------------------|-------------------------------|
| FILL               | GL to 2.00                   | Not Suitable                  |
| Brown Boulder CLAY | 1.00 m<br>2.00 m             | 200 КРа<br>250 КРа            |
| Black Boulder CLAY | 2.00 m<br>3.00 m<br>4.00 m + | 250 KPa<br>300 KPa<br>400 Kpa |

Settlement in the glacial till under the above loads will be less than10mm in the brown boulder clay and less than 5mm in the black lodgement till.

Conventional reinforced strip or pad foundations are therefore recommended for this development. If basements are proposed the black lodgement till below 2.00 metres will be the obvious founding medium with allowable bearing pressures probabaly exceeding design requirements.

Significant ground water ingress during shallow foundation construction is not expected. Should isolated seepages occur they will be readily controlled using light pumping from local sumps.

Installed standpipes indicate that the final standing ground water level is approximately 1.20 metres BGL. This will be significant if basement construction is envisaged.

Visual inspection of all foundation excavation is strongly recommended to ensure uniformity and suitability of the founding medium. Any soft or suspect material should be removed and replaced with low-grade concrete.

#### Excavation

Trial Pit excavations were quite stable and foundation or trench excavations should remain stable during the construction period.

Statutory safety regulations should however be observed. These prohibit personnel entering unsupported excavations greater than 1.20 metres deep, irrespective of apparent stability.

The very high strength of the black boulder clay and presence of boulders may present excavation difficulties. Experienced local contractors will be well acquainted with excavation in this material and plant requirements for the purpose. Ground water and gas levels were monitored in the three installed standpipes over two site visits after completion of works. Full details are presented in Appendix II.

Water levels ranged from 3.25 to 4.40 metres BGL on the initial visit with levels rising to 2.30 to 3.80 metres BGL one month after completion of drilling. A final standing water table of 1.50 to 2.00 metres BGL can be expected and would be typical of the local boulder clay deposits.

Landfill gas concentrations were also established at both site visits. Levels for CH4, CO2, o2, CO and H2S were negligible and no issues relating to gas generation arise.

#### Roads

CBR values have been established at seven locations over the site area Tests were carried out on generally granular material (FILL) at a depth of 0.50 metres.

High values were established with an average CBR in excess of 10% indicating suitability for road or car park construction.

We would recommend careful visual inspection of excavated formation to ensure that all top soil and organic peaty soils is removed.

#### Percolation (BRE Digest 365)

Three percolation tests carried out in the gravelly boulder clay all recorded refusal. The results are typical of the highly impermeable soils of the greater Dublin area.

Disposal of storm or surface water to the local authority system of to a suitable watercourse should be considered.

#### Concrete

Low sulphate content and near neutral pH values confirm that no special precautions are required for protection of foundation concrete.

#### Environmental

Comprehensive RILTA Suite (WAC) testing confirms that the made ground and sub soil is INERT and no issues arise as to safety of personnel on site or disposal of excavated material either on or off site.

IGSL/JC July 2019

| -         | ر<br>رده ا                                                                                                                                                |                                                                                                                            |                | GE             | OTECHNIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL BORI                                                         | NG R         | ECO         | ORD                                                                  |                |                   |                                                                              | R                                                | 21813                                                 | l.        |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|-------------|----------------------------------------------------------------------|----------------|-------------------|------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------|--|
| co        | NTRAC                                                                                                                                                     | T A                                                                                                                        | rton Roa       | d, Tailaght    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |              |             |                                                                      |                | BOREHOLE NO. BH01 |                                                                              |                                                  |                                                       |           |  |
|           |                                                                                                                                                           |                                                                                                                            | m AOD)         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YPE Dando 2000<br>HOLE DIAMETER (mm) 200<br>HOLE DEPTH (m) 5.70 |              |             |                                                                      |                |                   | SHEET Sheet 1 of 1<br>DATE COMMENCED 27/05/2019<br>DATE COMPLETED 27/05/2019 |                                                  |                                                       |           |  |
| -         | ENT                                                                                                                                                       |                                                                                                                            |                | d Properties L | the second | the local day in the local day                                  | MER REF. NO. |             |                                                                      |                |                   |                                                                              | BORED BY D. Tolster                              |                                                       |           |  |
| ENG       | GINEEF                                                                                                                                                    | Ba                                                                                                                         | rrett Mat      | iony CE        | ENERG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y RATIO (%)                                                     | 1010         | _           | -                                                                    |                | PROC              | ESSEC                                                                        | BY E Kearney                                     |                                                       | _         |  |
| (m) updan |                                                                                                                                                           |                                                                                                                            |                | Description    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Legend                                                          | Elevation    | Depth (m)   | Ref.<br>Number                                                       | Sample<br>Type | tideo (           | n .                                                                          | Recovery                                         | Field Test<br>Results                                 | Standpipe |  |
| 1         | MADE GROUND comprised of: Stiff brown sandy<br>gravelly CLAY.<br>MADE GROUND comprised of: Firm to stiff brown<br>motified grey sandy gravely sitly CLAY. |                                                                                                                            |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |              | 0.20        | AA38088<br>AA38089                                                   | 8<br>8         | 1.00              |                                                                              |                                                  | N+25<br>(4.6.6.6.6.7)<br>N=14                         |           |  |
|           | a med                                                                                                                                                     | Very stiff to hard black sandy gravelly sifty CLAY. Ha<br>a medium cobbie and boulder content which are<br>>500mm in size. |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |              | 2.80        | AA38090                                                              | Ð              | 3.06              |                                                                              |                                                  | (2, 1, 2, 3, 4, 6)<br>N = 35<br>(5, 7, 9, 6, 9, 6)    |           |  |
|           |                                                                                                                                                           |                                                                                                                            |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |              |             | AA38391                                                              | 9              | 4.00              |                                                                              |                                                  | N = 50150 nm<br>(19, 6, 32, 18)                       |           |  |
| 4         | 0000                                                                                                                                                      | OBSTRUCTION<br>End of Borehole at 5.70 m                                                                                   |                |                | -0-X<br>-0-X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | 5.90         | AA111709    | 8                                                                    | 5.00           |                   |                                                                              | N = 42<br>(7. 6. 11, 11, 10, 10)<br>N = 50/75 mm |                                                       |           |  |
|           | End o                                                                                                                                                     | (Boreho                                                                                                                    | n<br>Ne at 5.7 | 0 m            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |              |             |                                                                      |                |                   |                                                                              |                                                  | (18, 28, 50)                                          |           |  |
| -         |                                                                                                                                                           | 1                                                                                                                          | ORING/C        | HISELLING      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Water                                                           | Casi         |             | Sealed                                                               | Ris            |                   |                                                                              | -                                                | TER STRIKE DETA                                       | ILS       |  |
| 4         | 1000                                                                                                                                                      | fo (m)<br>4.3                                                                                                              | (h)<br>1       | Comments       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strike                                                          | Dep          |             | At                                                                   | To             |                   | nime<br>min)                                                                 | 1                                                | mments                                                | _         |  |
| 5         |                                                                                                                                                           | 5,9                                                                                                                        | 2              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |              |             |                                                                      |                |                   |                                                                              |                                                  | lo water strike                                       |           |  |
|           |                                                                                                                                                           |                                                                                                                            | _              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                               |              |             | -                                                                    | -              | -                 | 0                                                                            | RO                                               | UNDWATER PROC                                         | 3RE       |  |
| 10        | TALLA1                                                                                                                                                    | Tip Dec                                                                                                                    |                | op RZ Base     | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date                                                            | H            | ole<br>epth | Casing<br>Depth                                                      | P\$            | oth to<br>ater    | Com                                                                          |                                                  |                                                       |           |  |
|           |                                                                                                                                                           | lan -                                                                                                                      | anned k        |                | (Abe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | 1            | Same        | ie Legens                                                            |                |                   |                                                                              |                                                  |                                                       |           |  |
|           |                                                                                                                                                           |                                                                                                                            |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |              | 5-54RC      | ile Legens<br>(blubel pit)<br>Noted<br>blob Diracted<br>contents Sam |                | inter Text        | 0.41                                                                         | I - Linck<br>Angle<br>- Lincov<br>I - Vilute     | ebuted 100mm Daveler<br>Woled Melm Banyte<br>r Sample |           |  |

Appendix I Boring Records

| لحت ا                                                                                                                                                                                   |                                                                        | GEOTE             | CHNIC           | AL BORI                         | NG R          |                         | REPORT NUMBER                   |                                                                                                                 |                         |                       |                                                                   |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|-----------------|---------------------------------|---------------|-------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------------------------------------------------|----------------------|
| CONTRACT                                                                                                                                                                                | Airton Ros                                                             | sd, Taliaght      |                 |                                 |               |                         |                                 |                                                                                                                 | BOREH                   | OLE NO                | D. BH02                                                           |                      |
| CO-ORDINA                                                                                                                                                                               | TES<br>VEL (m AOD)                                                     | e                 | RIG TY<br>BOREH | PE<br>IOLE DIAMET<br>IOLE DEPTH | 1) :          | Dando 20<br>200<br>1.40 | 000                             | ATE COMMENCED 28/05/2019<br>DATE COMPLETED 28/05/2019                                                           |                         |                       |                                                                   |                      |
| CLIENT                                                                                                                                                                                  |                                                                        | d Properties Ltd. | SPT HA          | MMER REF.                       |               |                         | 1.40                            |                                                                                                                 | BORED                   | BY                    | D. Toister                                                        |                      |
| Depth (m)                                                                                                                                                                               |                                                                        | Description       |                 | Legend                          | Elevation     | Oepth (m)               | Ref.<br>Number                  | the second se | Depth<br>Cepth<br>(iii) | ŝ                     | _                                                                 | Standpipe<br>Details |
| MADE GROUND comprised of Soft sandy (<br>sity CLAY Has a low cobble and bouider co<br>which are >400mm in size.<br>OBSTRUCTION: Possibly a large cobble or<br>End of Borehole at 1.40 m |                                                                        | content           |                 |                                 | 1.40          |                         |                                 |                                                                                                                 |                         | N=11<br>(2,2,1,3,5,2) |                                                                   |                      |
| 94                                                                                                                                                                                      |                                                                        |                   |                 |                                 |               |                         |                                 |                                                                                                                 |                         |                       |                                                                   |                      |
| om (m) To                                                                                                                                                                               | TA BORING(C<br>(m) Time<br>(h)<br>4 1.5<br>DN DETAILS<br>ip Depth R2 1 | Comments          | Туре            | Water<br>Strike<br>Date         | Casin<br>Dept | h                       | Sealed<br>At<br>Casing<br>Depth | Rise<br>To<br>Dep                                                                                               | 0                       | ime<br>nin)           | ATER STRike DET.<br>Comments<br>No water strike<br>ROUNDWATER PRO |                      |

|                   | ىرى<br>يەدە     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | GEO                                              | TECHNIC | AL BORI                        | NG                  | RECO                           | ORD                                              |       |                                                                              |                     | F                            | 21813                                                         |     |
|-------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|---------|--------------------------------|---------------------|--------------------------------|--------------------------------------------------|-------|------------------------------------------------------------------------------|---------------------|------------------------------|---------------------------------------------------------------|-----|
| co                | NTRACT          | r A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | irton Roi                       | ad, Tailaght                                     |         |                                |                     |                                |                                                  |       | BOREHOLE NO. BH02A                                                           |                     |                              |                                                               |     |
|                   | ORDIN/          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (m AOD)                         | 1                                                |         | PE<br>HOLE DIAME<br>HOLE DEPTH |                     | im)                            | Dando 20<br>200<br>6.10                          | 000   | SHEET Sheet 1 of 1<br>DATE COMMENCED 28/05/2019<br>DATE COMPLETED 28/05/2019 |                     |                              |                                                               |     |
|                   | ENT             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | ad Properties Ltd.                               | SPT HA  | AMMER REF.                     | MMER REF. NO. BOREL |                                |                                                  |       | D BY D. Toister                                                              |                     |                              |                                                               |     |
|                   | AMEER           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arrett Mal                      | hony CE                                          | ENERG   | SY RATIO (%                    | )                   |                                | 1                                                | Sar   | PROC<br>nples                                                                | ESSEC               | DBY                          | E Kearney                                                     | -   |
| Depth (m)         |                 | Description pusces (III) Up to the company of the c |                                 |                                                  |         |                                |                     | Ref.<br>Number                 | Sample<br>Type                                   | Depth | (m)<br>Recovery                                                              | Recovery            | Field Test<br>Results        | Standpipe                                                     |     |
| 0<br>11<br>2<br>3 | silty CL        | AY F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UND com<br>las a low<br>00mm in | prised of: Soft san<br>cobble and bould<br>size. |         |                                |                     | AA30092                        | 0                                                | 1.00  |                                                                              |                     | N=7<br>(3,4,2,2,1,2)<br>N=3  |                                                               |     |
|                   | Cliff on        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ander                           |                                                  |         |                                | 2.70                |                                |                                                  |       |                                                                              |                     | (0, 0, 0, 0, 1, 2)           |                                                               |     |
| 3                 | Has a<br>>500m  | mediu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m cobble                        | wn sandy graveliy<br>and boulder conit           | ×       |                                |                     | AA36094                        | 8                                                | 3.00  |                                                                              |                     | N=25<br>(11, 6, 4, 6, 8, 10) |                                                               |     |
|                   | Has a r         | ry stiff to hardblack very sandy gravelly sity CLAY.<br>s a medium cobble and boulder content which are<br>00mm in size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                                  |         |                                |                     | 3.90                           | AA38095                                          | в     | 4.00                                                                         |                     |                              | (0, 13, 15, 12, 12, 14).                                      |     |
| 5                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                  |         | × 9-<br>× -9-                  |                     |                                | AA38066                                          | 6     | 500                                                                          |                     |                              | N = 48<br>(5, 14, 10, 10, 15, 11)                             |     |
| 5                 | OBSTR<br>End of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ON<br>ole at 6.1                | 10 m                                             |         | 20                             | -                   | 6,10                           |                                                  |       |                                                                              |                     |                              | N × 50/150 avn<br>(12, 18, 27, 23)                            |     |
| 7                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                  |         |                                |                     |                                |                                                  |       |                                                                              |                     |                              |                                                               |     |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                  |         |                                |                     |                                |                                                  |       |                                                                              |                     |                              |                                                               |     |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                  |         |                                |                     |                                |                                                  |       |                                                                              |                     |                              |                                                               |     |
| HAF               | ED STR          | ATA B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | And in case of the Owner,       | HISELLING                                        |         |                                |                     |                                |                                                  |       |                                                                              |                     | WA                           | TER STRIKE DETA                                               | JLS |
| 4                 | A               | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0)                             |                                                  |         | Water<br>Strike<br>4.00        | Cas<br>Dep          | dh                             | At                                               | Ris   |                                                                              | Time<br>(min)<br>20 | 1                            | omments<br>Seepage                                            |     |
| 5.5               | 3               | 5.4 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                                  |         |                                |                     |                                |                                                  |       |                                                                              | 20                  |                              | verballe                                                      |     |
|                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                  |         | -                              | 1                   | tole                           | Casine                                           | L Pr  | othete                                                                       |                     | the states                   | UNDWATER PROC                                                 | RE  |
|                   | ate             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | op IRZ Base                                      | Туре    | Date                           |                     | epth                           | Cásing<br>Depth                                  | - No  | oth to<br>ater                                                               | Comr                | ment                         | 5                                                             | -   |
| REM.              | ARKS            | CATS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | canned k                        | ocation.                                         |         |                                | -                   | Samp<br>0 - Small<br>5 - Sup 1 | ie Legens<br>Ostated (ub)<br>National<br>Planted | 5     |                                                                              | 0                   | t over                       | logvided 100kmir Dameter<br>dursed Picton Sample<br>el Sample |     |

| 1         | ر<br>بەق                                                                                                 |               |            | GEOTE                | CHNIC/        | AL BORI                   | NG F      | RECO             | ORD                                                                              |                      |             |                                              | 5            | 21813                                                       |           |
|-----------|----------------------------------------------------------------------------------------------------------|---------------|------------|----------------------|---------------|---------------------------|-----------|------------------|----------------------------------------------------------------------------------|----------------------|-------------|----------------------------------------------|--------------|-------------------------------------------------------------|-----------|
| co        | NTRAC                                                                                                    | T A           | irton Roa  | id, Tallaght         |               |                           |           |                  |                                                                                  | - 1                  | BORE        |                                              | NO.          | BH03                                                        |           |
|           |                                                                                                          | ATES          | (m AOD)    |                      |               | HOLE DIAMETER (mm) 200    |           |                  |                                                                                  |                      |             | DATE COMMENCED 31/00<br>DATE COMPLETED 04/00 |              |                                                             |           |
| -         | ENT                                                                                                      |               |            | d Properties Ltd.    |               | interioce ber mility 0.45 |           |                  |                                                                                  |                      |             | DBY                                          | LEI          | ED 04/06/2019<br>D. Toister                                 | -         |
|           | SINEER                                                                                                   |               | arrett Mal |                      | 10.71006.000  | Y RATIO (%)               |           |                  |                                                                                  |                      | PROC        |                                              | D BY         |                                                             |           |
| (m) under |                                                                                                          |               | ĝ          | Description          |               | Legend                    | Elevation | Depth (m)        | Ref.<br>Number                                                                   | Sample Sample Sample | Depth       | Ē                                            | Recovery     | Field Test<br>Results                                       | Standpipe |
| 0         |                                                                                                          | ACAD          |            | mprised of CL804 sto | ana fill with |                           | -         | 0.10             |                                                                                  |                      |             | 1                                            |              |                                                             | 01        |
| 1         | cobbl                                                                                                    | es)           |            |                      |               | ******                    | -         | 0.50             | - 1                                                                              |                      |             |                                              |              |                                                             |           |
|           | Patro                                                                                                    | BueAubuc      | wn SiL n   | CLAY with some gra   | ivel          |                           |           |                  | AA117458                                                                         | Đ                    | 1.00        |                                              |              | N = 18<br>(7,3.3,4.5,5)                                     |           |
|           | Firm dark brown/grey gravely CLAY<br>Very stiff to hard black sandy gravely CLAY with<br>angular cobbles |               |            |                      |               | 10                        | 1.40      |                  |                                                                                  |                      |             |                                              | 3152375382 C |                                                             |           |
| ,         |                                                                                                          |               |            |                      |               | 0.0                       |           | 1.90             | AA117459                                                                         | n                    | 2.00        |                                              |              | N= 34<br>(4, 3, 6, 6, 10, 10)                               |           |
|           |                                                                                                          |               |            |                      |               | 0 0 0 0                   |           |                  | AA117470                                                                         | 8                    | 300         |                                              |              | N = 55<br> 4, 8, 12, 14, 14, 15)                            |           |
|           |                                                                                                          |               |            |                      |               |                           |           |                  | AA117471                                                                         | 8                    | 4.00        |                                              |              | N = 54<br>(8, 0, 15, 10, 12, 17)                            |           |
|           |                                                                                                          |               |            |                      |               | 10°0                      |           |                  | AA117472                                                                         | 8                    | 5.00        |                                              |              | N = 63<br>(6, 12, 14, 18, 18, 12)                           |           |
|           | 00007                                                                                                    | RUCTIO        |            |                      |               | 0.0                       |           | 6,40             | AA117423                                                                         | 8                    | 6.00        | 6                                            |              | N = 59/75.mm<br>(76, 50)                                    |           |
|           |                                                                                                          |               | ole at 6.4 | 0 m                  |               |                           |           |                  |                                                                                  |                      |             |                                              |              |                                                             |           |
| IAI       | - T                                                                                                      |               | ORING/C    | HISELLING            |               | Water                     | Cas       | ing 13           | Sealed                                                                           | Rise                 |             | Time                                         | -            | TER STRIKE DETA                                             | ULS       |
| om<br>5   | 2.0.5                                                                                                    | To (m)<br>5.3 | (h)<br>1.5 | Comments             |               | Strike<br>4.00            | De<br>4.0 | pth              | At No                                                                            | To<br>3.50           | 1.0         | min)<br>20                                   | C            | omments<br>Slow                                             |           |
| 5.        | 7                                                                                                        | 5.8<br>6.4    | 0.5<br>1.5 |                      |               |                           |           | 50 C             |                                                                                  | 3.36                 |             | 20                                           |              | ALC: NOTE                                                   |           |
|           |                                                                                                          |               |            |                      |               |                           |           |                  |                                                                                  | -                    |             |                                              | GRO          | UNDWATER PROC                                               | SRE       |
| -10       |                                                                                                          | TION DE       | 100000     |                      |               | Date                      |           | Hole<br>Nepth    | Casing<br>Depth                                                                  | Der                  | oth to ater | Com                                          |              |                                                             |           |
| C         | ale                                                                                                      | Tip De        | pth RZ 1   | op IRZ Base          | Туре          | 31-05-19<br>04-06-19      | 1         | 5.00<br>5.00     | 5.00<br>NE                                                                       | - 4                  | 00          | End of<br>End of                             | 1st Da<br>DH | ay                                                          |           |
| EN        | ARKS                                                                                                     | CATS          | canned le  | scation and hand du  | g inspection  | pit carried ou            | t         | Samp<br>C- Small | le Legend<br>Desired table<br>Rocked<br>Tabletation<br>Scotter<br>Stream (Second | 9<br>9<br>2          |             | L.                                           | r . Use      | Solwied 100mm Diameter<br>dia bed Police Sample<br>e Dample |           |

| đ                 | 5                       |           | GEOTE                                            | CHNIC                                 | AL BORI           | NGE                     | FCC                         | RD                                     |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                 | REPORT NUMBER                                           |           |
|-------------------|-------------------------|-----------|--------------------------------------------------|---------------------------------------|-------------------|-------------------------|-----------------------------|----------------------------------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------|-----------|
| 1                 | 531                     |           | GLUIE                                            | .ormio/                               | L DOIN            |                         |                             |                                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | 21813                                                   | _         |
| CON               | TRACT                   | Airton R  | load, Tallaght                                   |                                       |                   |                         |                             |                                        |                | BORE           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO.                               | BH04<br>Sheet 1 of 1                                    |           |
|                   | ORDINATE                |           | D)                                               |                                       | PE<br>IOLE DIAMET | Dando 20<br>200<br>6.40 | 00                          | DATE COMMENCED 30/05/20                |                |                | ED 30/05/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                 |                                                         |           |
| CLIE              |                         | Airton R  | oad Properties Ltd.                              | -                                     | AMMER REF.        |                         | -                           |                                        |                | BORE           | DBY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D. Totster                        |                                                         |           |
| ENG               | INEER                   | Barrett A | tahony CE                                        | ENERG                                 | Y RATIO (%)       |                         |                             | -                                      |                | PROCE          | ESSEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BY                                | F.C                                                     |           |
| Depth (m)         |                         |           | Description                                      |                                       | Legend            | Elevation               | Depth (m)                   | Ref.<br>Number                         | Sample<br>Type | Depth          | nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Recovery                          | Field Test<br>Results                                   | Standpipe |
| 0                 | Termacad                |           |                                                  |                                       |                   | 5                       | 0.10                        | -                                      |                | -              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                 |                                                         |           |
|                   | Firm brow               | n sandy S | Comprised of CL 804 st<br>SILT/CLAY with some fi | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                   | 1.60                    | AA105095                    | D                                      | 1,00           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N # 24<br>(3.5, 5, 5, 5, 6)       |                                                         |           |
|                   | Very stiff t<br>cobbles | arewn gra | velly CLAY with occasi                           | 0 0 0 0                               |                   | 2.80                    | AA 100C97                   | B                                      | 2.00           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N = 44<br>(6, 7, 8, 12, 11, 12)   |                                                         |           |
| 3                 | Hard blac<br>cobbles    | k sandy g | ravelly CLAY with large                          | 0000                                  |                   | 2.00                    | AA106008                    | в                                      | 3.00           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 = 48<br>(6, 8, 13, 12, 12, 11) |                                                         |           |
| 4                 |                         |           |                                                  | 01010                                 |                   |                         | AA106099                    | 8                                      | 4.00           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17, 11, 15, 15, 16, 18)           |                                                         |           |
| 5                 |                         |           |                                                  |                                       | 0.010.0           |                         |                             | AA 106100                              | Ð              | 6.00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | N = 56<br>(9, 14, 10, 54, 54, 18)                       |           |
|                   | Obstructio<br>End of Bo |           | 5.40 m                                           |                                       | 0.0               | _                       | 6.40                        | AA105101                               | 8              | 8.00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | N = 60(75.mm<br>(75, 50)                                |           |
| 7                 |                         |           |                                                  |                                       |                   |                         |                             |                                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                                         |           |
| 9                 |                         |           |                                                  |                                       |                   |                         |                             |                                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                                         |           |
| HAR               | DSTRAT                  |           | CHISELLING                                       |                                       |                   |                         |                             |                                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WA                                | TER STRIKE DETA                                         | ul.s      |
| rom               | 1.04                    | 1.05      | <sup>0</sup> Comments                            |                                       | Water<br>Strike   | Cas                     |                             | Al                                     | Rise           |                | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ċ                                 | omments                                                 |           |
| 3.1<br>5.6<br>6.3 | 5.8                     |           | 5                                                |                                       | 2-0/04/01         | -                       |                             | - 7.54                                 |                |                | 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | lo water strike                                         |           |
|                   | -                       |           | 4                                                |                                       | _                 |                         |                             |                                        |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GRO                               | UNDWATER PROC                                           | RE        |
| 0.2520            | ALLATION<br>ate Tip     |           | 2 Top R2 Base                                    | Туре                                  | Date              |                         | tale<br>epth                | Cesing<br>Depth                        | 2              | oth to<br>ater | Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ment                              | 5                                                       |           |
| REMA              | ARKS CA                 | T scanned | flocation and hand du                            | g inspection                          | pit carried o     | sut .                   | Sampi<br>o Senili<br>5-Susc | le Legend<br>Diversioner<br>But Decree | 1              |                | , in the second s | 17 - Und<br>Sample                | Issuites 100em Durrent<br>Autor Palor Secole<br>d'Angle |           |

| 200       | لرب<br>دوه                                                                                                                                                                 |                                                                                                                                                                                                                                              |             | G                                                                                                                | EOTEC       | HNICA       | L BORI                                      | NG F      | RECO            | ORD                                                                                |           |                   |                                       | F                  | 21813                                                          |                      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------------------------------------|-----------|-----------------|------------------------------------------------------------------------------------|-----------|-------------------|---------------------------------------|--------------------|----------------------------------------------------------------|----------------------|
| CO        | NTRACT                                                                                                                                                                     | T Airt                                                                                                                                                                                                                                       | an Roa      | d, Tallaght                                                                                                      | )           |             |                                             |           |                 |                                                                                    | 1         | BOREHOLE NO. BH05 |                                       |                    |                                                                |                      |
| co.       | ORDIN                                                                                                                                                                      | ATES                                                                                                                                                                                                                                         |             | and the second |             | RIG TYP     |                                             |           |                 |                                                                                    |           |                   | SHEET Sheet<br>DATE COMMENCED 28/05/2 |                    |                                                                |                      |
| GRØ       | OUNDL                                                                                                                                                                      | EVEL (n                                                                                                                                                                                                                                      | AOD)        |                                                                                                                  |             | BOREH       | OLE DIAMETER (mm) 200<br>DLE DEPTH (m) 8.30 |           |                 |                                                                                    |           |                   | COMP                                  |                    |                                                                |                      |
| CLI       | ENT                                                                                                                                                                        | Airt                                                                                                                                                                                                                                         | on Roa      | d Propertie                                                                                                      | s Ltd.      | - Antonio - | AMMER REF. NO.                              |           |                 |                                                                                    |           |                   | D BY                                  |                    | D, Tolster                                                     |                      |
| N         | INEER                                                                                                                                                                      | Bar                                                                                                                                                                                                                                          | rett Mah    | ony CE                                                                                                           | ····        | ENERG       | YRATIO (%)                                  |           |                 | _                                                                                  | _         |                   | ESSEE                                 | BY                 | E Kearney                                                      |                      |
| Depth (m) |                                                                                                                                                                            |                                                                                                                                                                                                                                              | t           | Description                                                                                                      |             |             | Legend                                      | Elevation | Depth (m)       | Ref.<br>Number                                                                     | Type a    | nples<br>Htdag    | Ē                                     | Recovery           | Field Test<br>Results                                          | Standpipe<br>Details |
| 1         | MADE GROUND comprised of: Firm brown sandy<br>gravelly sitly CLAY,<br>MADE GROUND comprised of: Firm to stiff brown<br>sandy gravelly sitly CLAY. Has a low cobble content |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             |                                             |           | 1.10            | AA11401                                                                            | 8         | 10                | ,                                     |                    | N = 22<br>(2. 5. 6, 6, 6, 4)                                   |                      |
| 2         |                                                                                                                                                                            |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             |                                             |           | 2,90            | AA11402                                                                            | в         | 2.0               |                                       |                    | N = 10<br>(2.2.4.4.5.6)                                        |                      |
| •         |                                                                                                                                                                            | Very stiff dark grey sandy gravely sity CLAY. Has a<br>low cobble and boulder content which are >400mm in<br>size.<br>Very stiff to hard black sandy gravely sity CLAY. Has<br>a low cobble and boulder content which are >500mm<br>in size. |             |                                                                                                                  |             |             |                                             |           | 3.40            | AA11400                                                                            | в         | 3.0               | 2                                     |                    | N = 53<br>(8, 7, 13, 16, 14, 10)                               |                      |
| •         | a low o                                                                                                                                                                    |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             |                                             |           |                 | A& 11404                                                                           | в         | 4.0               |                                       |                    | N = 37<br>(5, 4, 7, 9, 10, 11)                                 |                      |
|           |                                                                                                                                                                            |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             | ×                                           |           |                 | 4411405                                                                            | 8         | 50                | ř.                                    |                    | N = 50150 mm<br>(8, 11, 18, 34)                                |                      |
| 6         |                                                                                                                                                                            |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             | ×                                           |           |                 | AA11406                                                                            | в         | 6.00              |                                       |                    | N = 55<br>(8, 11, 12, 14, 13, 16)                              |                      |
|           |                                                                                                                                                                            |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             | X9<br>- X<br>- 0                            |           |                 | AA31407                                                                            | •         | 7.00              | 2                                     |                    | (8, 10, 12, 14, 12, 13)                                        |                      |
| e<br>7    | End of                                                                                                                                                                     | Borehol                                                                                                                                                                                                                                      | e at 8.3    | 0 m                                                                                                              |             |             | -0-X                                        |           | 8,30            | AA11408                                                                            | 0         | 8.03              |                                       |                    | N × 50/225 mm<br>(16, 9, 20, 22, 0)                            |                      |
|           |                                                                                                                                                                            |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             |                                             |           |                 |                                                                                    |           |                   |                                       |                    |                                                                |                      |
| 4         | RD STR                                                                                                                                                                     | ATA BO                                                                                                                                                                                                                                       | RING/C      | HISELLING                                                                                                        |             |             |                                             |           |                 |                                                                                    |           |                   |                                       | WA                 | TER STRIKE DETA                                                | MLS                  |
| on        | 1 (m) T                                                                                                                                                                    | io (m)                                                                                                                                                                                                                                       | Time<br>(h) | Commen                                                                                                           | is.         |             | Water<br>Strike                             | Cas       | oth             | Sealed                                                                             | Ris<br>To |                   | Time<br>(min)                         | 1                  | omments                                                        |                      |
| 5         | 3.2 3.5 0.5<br>5.2 5.4 0.75<br>3.1 8.3 2                                                                                                                                   |                                                                                                                                                                                                                                              |             |                                                                                                                  | 0.5<br>0.75 |             | 6.50                                        |           | 50              | 6.70                                                                               | 5.8       |                   | 20                                    | 1                  | Voderale                                                       |                      |
| _         |                                                                                                                                                                            |                                                                                                                                                                                                                                              |             |                                                                                                                  |             |             | -                                           | 1         | - I.,           |                                                                                    | -         |                   |                                       | GRO                | UNDWATER PROC                                                  | GRE                  |
| 100       |                                                                                                                                                                            | ION DET                                                                                                                                                                                                                                      |             |                                                                                                                  |             |             | Date                                        |           | Hole<br>Dépth   | Casing<br>Depth                                                                    | P.        | pth to<br>Vater   | Com                                   | men                | fs                                                             |                      |
| 1         | Jate                                                                                                                                                                       | Tip Dep                                                                                                                                                                                                                                      | RZT         | op RZ Ba                                                                                                         | se Ty       | pe          | -                                           |           |                 |                                                                                    |           |                   |                                       |                    |                                                                |                      |
| EN        | ARKS                                                                                                                                                                       | CAT SC                                                                                                                                                                                                                                       | anned lo    | ocation.                                                                                                         |             |             | 1                                           |           | Samp<br>D-Small | lle Legend<br>Osatel ka<br>Deuted<br>p D-A Deuted<br>p D-A Deuted<br>averenal tary | -         |                   |                                       | JF - Un<br>Lunicie | daluradi 190mm Diameter<br>du Gert Proven Dangiti<br>dr Dangek |                      |

| نے<br>دور              | لىر<br>دو                                |                          | GEOTE                                                | CHNICA                    | L BORIN                       | IG F      | ECC              | RD                                                                             |                |                         |             | RE                                              | 21813                                                                       |           |
|------------------------|------------------------------------------|--------------------------|------------------------------------------------------|---------------------------|-------------------------------|-----------|------------------|--------------------------------------------------------------------------------|----------------|-------------------------|-------------|-------------------------------------------------|-----------------------------------------------------------------------------|-----------|
| CONTR                  | 1920                                     | Virton Roa               | d, Tallaght                                          |                           |                               |           |                  |                                                                                |                | BORE                    |             | NO.                                             | BH06                                                                        |           |
|                        | DINATES                                  | (m AOD)                  | x                                                    | RIG TYP<br>BOREH<br>BOREH | PE<br>OLE DIAMET<br>OLE DEPTH | ER (m     | m) :             | Dando 20<br>200<br>5.60                                                        | 00             | DATE DATE               | COMM        |                                                 | Sheet 1 of 1<br>D 30/05/2019<br>D 30/05/2019                                |           |
| CLIENT                 | 1947 - 1978 - 1978<br>1979 - 1979 - 1978 |                          | d Properties Ltd.                                    | SPT HA                    | MMER REF.                     |           |                  |                                                                                |                | BORE                    |             |                                                 | D. Toister                                                                  |           |
| ENGINE                 | ER E                                     | larrett Mah              | iony CE                                              | ENERG                     | Y RATIO (%)                   | -         |                  | 1                                                                              |                | PROCI                   | ISSED       | BY                                              | F.C                                                                         | -         |
| Depth (m)              |                                          | i                        | Description                                          |                           | Legend                        | Elevation | Depth (m)        | Ref.<br>Number                                                                 | Sample<br>Type | Depth                   |             | Recovery                                        | Field Test<br>Results                                                       | Standpipe |
|                        | AY with s                                | ome cobb                 | mprised of brown sar<br>les }<br>dy SiLT/CLAY with s |                           |                               |           | 1.30             | 44114409                                                                       | в              | 100                     |             |                                                 | N= 13<br>(3.3.4.4.4.3)                                                      |           |
|                        |                                          | nai cobble               |                                                      | and and a                 |                               |           | 2.90             | AA 154210                                                                      | 6              | 2.00                    |             |                                                 | N=21<br>(2.2.4.5.6.6)                                                       |           |
| 60                     | ry stiff to I<br>me cobble               | hard black<br>is and occ | sandy gravelly CLA<br>asional boulders               | Y with                    | 10.00 000 00                  |           |                  | AA154611<br>AA154612                                                           | B<br>U         | 4.00                    |             |                                                 | N = 32<br>(7. 7. 8, 8, 9, 9)<br>N = 44<br>(10. 6, 11, 10, 11, 12)           |           |
| 5                      |                                          |                          |                                                      |                           |                               |           |                  | AA114413                                                                       | 0<br>11        | 5.00                    |             |                                                 | N = 46<br>(12, 13, 56, 8, 10, 12)<br>N = 50/225 ann<br>(10, 19, 12, 15, 23) |           |
| o<br>o<br>o<br>b<br>En | struction<br>d of Borel                  | hole at 6.6              | 10 m                                                 |                           | 66                            |           | 6.60             | _                                                                              |                |                         |             |                                                 |                                                                             |           |
|                        | 1                                        | BORING/C                 | HISELLING                                            |                           | Water                         | 1 Cas     | ing [ ]          | Sealed                                                                         | Ris            |                         | Time        | T.                                              | ER STRIKE DET                                                               | AILS      |
| from (m<br>3<br>4.5    | i) To (m)<br>3.3<br>4.7                  | (h)<br>0.5<br>0.5        | Comments                                             |                           | Strike<br>6.00                | De:       | th               | At<br>No                                                                       | To<br>5.3      | 6. 174                  | (min)<br>20 | 1.20                                            | mments<br>oderate                                                           | -         |
| 6.4                    | 6.6                                      | 2                        |                                                      |                           |                               |           |                  |                                                                                |                |                         |             |                                                 |                                                                             |           |
|                        |                                          |                          |                                                      |                           | 2018-00-1                     | 1.        | iole             | Casing                                                                         | De             | oth in                  | 1           |                                                 | INDWATER PRO                                                                | GRE       |
| Date                   |                                          | epth R21                 | Top IRZ Base                                         | Туре                      | 0.05-19                       |           | epth<br>6.03     | Depth                                                                          |                | pth to<br>later<br>5.00 | Com         | 12.11                                           |                                                                             |           |
| REMAR                  | KS CAT                                   | scanned k                | ocation and hand du                                  | g inspection              | pit carried ou                | t.        | 0-5440<br>9-5440 | le Legend<br>Disturber (143)<br>Polarber<br>• Due Disturbed<br>• Due Disturbed |                | - Yat + Tuk             | 1000        | T - Londe<br>antiple<br>- Lincoles<br>C - Water | ruted 100mm Diameter<br>astad Pissio Sancia<br>Sange                        |           |

| ~       | <br>551 | -                    |                |               | GE                          | OTECH            | INICA      | BORI                 | NG F      | RECO          | ORD                                                                   |        |                  |                                                                                                                 | F                 | 21813                                                                             | ł         |
|---------|---------|----------------------|----------------|---------------|-----------------------------|------------------|------------|----------------------|-----------|---------------|-----------------------------------------------------------------------|--------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------|-----------|
| - 6     | TRAC    | T A                  | inton          | Road, T       | alleght                     |                  |            |                      |           |               |                                                                       |        | BORE             |                                                                                                                 | NO.               | BH07                                                                              | -         |
|         |         | ATES                 |                | 0.01          |                             |                  |            | LE DIAMET            |           | im)           | Dando 20<br>200                                                       | 00     | DATE (           | COMN                                                                                                            |                   |                                                                                   |           |
| -       | ENT     | LEVEL                | -              |               | roperties LM                | ii.              |            | LE DEPTH<br>MER REF. |           |               | 7.40                                                                  | -      | BORE             |                                                                                                                 | LE                | D. Toister                                                                        |           |
|         | INEEP   |                      |                | Mahony        |                             |                  |            | RATIO (%)            |           | -             |                                                                       | _      | PROCE            | 2000                                                                                                            | ) BY              |                                                                                   |           |
| Ē       |         |                      |                |               |                             |                  |            |                      | c         | Ê             |                                                                       |        | nples            | -                                                                                                               | >                 | 4                                                                                 | *         |
| neptu V |         |                      |                | Des           | cription                    |                  |            | Legend               | Elevation | Depth (m)     | Ref.<br>Number                                                        | Sample | Depth            | 1                                                                                                               | Recovery          | Field Test<br>Results                                                             | Standpipe |
| 1       |         | ACAD                 |                | -             |                             |                  |            |                      | -         | 0.10          | 1                                                                     | 1      |                  |                                                                                                                 | -                 |                                                                                   | 1         |
|         |         |                      |                |               | LAY with so                 |                  |            | x<br>x<br>           |           | 1.50          | AA114415                                                              | 8      | 1.00             | 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - |                   | N = 17<br>(3, 2, 3, 4, 5, 5)                                                      |           |
|         | occa:   | sional co            | obble          | 15            | .T/CLAY wi                  |                  |            | O Ro A               |           | 2.60          | AA114416                                                              | Ð      | 2.00             | ŝ                                                                                                               |                   | N = 21<br>(5, 3, 3, 7, 6, 8)                                                      |           |
|         | some    | still to h<br>cobble | ard n<br>s ann | d occasi      | dy veryy gri<br>onal boulde | avelly CL/<br>Hs | vy with    |                      |           |               | AA318437                                                              | B      | 3.00             |                                                                                                                 |                   | % = 44<br>(8, 7, 10, 10, 14, 10)                                                  |           |
|         |         |                      |                |               |                             |                  |            |                      |           |               | AA114418                                                              | 3      | 4.00             |                                                                                                                 |                   | N = 50<br>(8, 13, 13, 10, 14, 13)                                                 |           |
|         |         |                      |                |               |                             |                  |            |                      |           |               | AA114419                                                              |        | 3.00             |                                                                                                                 |                   | N=43<br>(8, 7, 7, 9, 12, 16)                                                      |           |
|         |         |                      |                |               |                             |                  |            |                      |           |               | AA114420                                                              | Ð      | 6.00             |                                                                                                                 |                   | N = 65<br>(4, 12, 19, 15, 10, 16)                                                 |           |
|         |         |                      |                |               |                             |                  |            | 25                   |           | 7.40          | 44114421                                                              | я      | 7.00             |                                                                                                                 |                   | N = 58<br>(8, 12, 11, 17, 13, 15)                                                 |           |
|         |         | uction<br>of Boreh   | ole :          | at 7.40 m     | 1                           |                  |            |                      |           |               |                                                                       |        |                  |                                                                                                                 |                   |                                                                                   |           |
| A       | RD ST   | RATA E               |                | NG/CHIS       |                             |                  |            |                      |           |               |                                                                       |        |                  |                                                                                                                 | WA                | ATER STRIKE DET                                                                   | AILS      |
|         |         | To (m)               | 1              | 107           | omments                     |                  |            | Water<br>Strike      | De        | oth           | Sealed                                                                | Ri     | 2                | Time<br>(min)                                                                                                   | 1.5               | Comments                                                                          |           |
| 3.57    | 2       | 3.4<br>5.5<br>7.4    | 1.1            | 1<br>1.5<br>2 |                             |                  |            | 4.30<br>5.50         |           | 30<br>50      | 4.50<br>7.00                                                          | 3.6    |                  | 20<br>20                                                                                                        | 1                 | Moderate                                                                          |           |
|         |         |                      |                | -             |                             | _                |            | -                    | 1         | 1             | 10                                                                    |        | -                |                                                                                                                 | GRC               | DUNDWATER PRO                                                                     | GRE       |
|         |         | TION D               |                |               | 03.0                        |                  | -          | Date                 |           | Hola<br>Depth | Casing<br>Depth                                                       | 9      | opth to<br>Vater | Com                                                                                                             | men               | nts                                                                               | _         |
| - 0     | Jate    | TID De               | pus            | NZ TOP        | RZ Base                     | Тур              | e          | -                    |           |               |                                                                       |        |                  |                                                                                                                 |                   |                                                                                   |           |
| EN      | ARKS    | CATE                 | can            | ned loca      | tion and ha                 | nd dug in        | spection p | it carried o         | ut.       | Same          | Die Legen<br>Disustes nuk<br>Disustes<br>piek Diruste<br>wonnertil Se | 3      |                  |                                                                                                                 | UT - Un<br>Sample | sparpled 100em Clander<br>Social Sect Rates<br>Netwood Factor Rates<br>Net Salepa | -         |

Appendix II Rotary Core Records

| -                  | 5 %<br>199         | 5 . I   |         |         | GEOT                                            | ECł             | INIC         | CAL CO              | RE LOO                   | RECO                                                | RD                          | £                  |                  |           |           | т NUM<br>2181     |                                        |
|--------------------|--------------------|---------|---------|---------|-------------------------------------------------|-----------------|--------------|---------------------|--------------------------|-----------------------------------------------------|-----------------------------|--------------------|------------------|-----------|-----------|-------------------|----------------------------------------|
| 00                 | NTR                | ACT     | A       | inton   | Road, Tallaght                                  |                 |              |                     |                          |                                                     |                             | DRIL               | LHOLE            | NO        | RC        | 01<br>et 1 of     | •                                      |
|                    |                    |         |         | (mO     | D)                                              |                 |              | RIG TYPE<br>FLUSH   |                          |                                                     | Geo 305                     | DATE               | DRILL            |           | 28/       | 05/2019           | 2                                      |
| CLI                | GINE               |         | A       | intorn  | Road Properties<br>Mahony CE                    | Ltd.            |              | INCLINATI           | ON (deg)<br>METER (m     | m)                                                  | Ain/Mist<br>-90<br>78       | 100000             | LED BY<br>GED BY |           |           | 3SL<br>).O'She    | a                                      |
| Downhole Depth (m) | Core Run Depth (m) | T.C.R.% | S.C.R.% | R.0.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>c 250 500 | Non-Intact Zone | Legend       | 20                  |                          | Descript                                            | ion                         |                    |                  | Depth (m) | Elevation | Standpipe Details | SPT (N Value)                          |
| 1                  | 1,50               | 0       | 0       | 0       |                                                 |                 | 8 0 N 0 0    | SYMMET<br>as sandy  | RIX DRILL<br>gravelly CL | ING: No rec<br>AY with occ                          | overy, obse<br>casional cot | eved by d<br>obles | riller           |           |           |                   | No. 20                                 |
| 2                  | 3.00               | 0       | D       | o       |                                                 |                 | A D D D D    |                     |                          |                                                     |                             |                    |                  |           |           |                   | N = 30<br>(6, 7, 5, 2,<br>4)<br>N = 35 |
| 4                  | 4.50               | 0       | a       | 0       |                                                 |                 | 10 010 01 01 |                     |                          |                                                     |                             |                    |                  |           |           |                   | (2.4, 8, 11,<br>8)<br>N = 27           |
| 5                  | 6.00               | D       | a       | 0       |                                                 |                 | 010,010,010  |                     |                          |                                                     |                             |                    |                  |           |           |                   | 0.6.7.9.<br>7)<br>N=45                 |
| 7                  | 7.50               | 0       | ٩       | 0       |                                                 |                 | 100 01 0 10  |                     |                          |                                                     |                             |                    |                  | 7.50      |           |                   | (0, 11, 22,<br>4, 9)                   |
| п                  |                    | 47      | o       | o       |                                                 |                 | 0,040,14     | subround            | d cobbles.               | slightly sar<br>Sand is tine<br>carse of tim<br>one | . Gravel is :               | angular to         | h                | 9.00      |           | munuum            | N = 29,60 n<br>(25, 23)                |
| 0                  | 9.00               | 0       | 0       | 0       |                                                 |                 | del did      | SYMMET<br>as gravel | RIX DRILL<br>y cobbly Cl | ING: No rec<br>LAY                                  | overy, obse                 | arved by d         | niller           |           |           |                   |                                        |
|                    | MAR                | -       | 0.00-   | 12.00   | Im.                                             | _               | -            |                     | Water                    | Casing                                              | Sealed                      | Rise               | Time             | 1         | TER S     |                   | DETAILS                                |
|                    |                    |         |         |         |                                                 |                 |              |                     | Strike<br>8.50           | Depth<br>8.50                                       | No                          | To                 | (min)            |           | Slow      |                   |                                        |
|                    |                    |         |         |         |                                                 |                 |              |                     |                          |                                                     |                             |                    |                  | GRO       | DUND      | WATE              | DETAIL                                 |
| NS                 | TAL                | LATI    | OND     | ETA     | LS                                              |                 |              |                     | Date                     | Hole<br>Depth                                       | Casing<br>Depth             | Depth to<br>Water  | Corr             | ment      |           |                   |                                        |
|                    | Date<br>-05-1      | 11      |         | epth    | RZ Top RZ Base<br>1.50 12.00                    |                 | Typ<br>50mm  |                     |                          | - MARKAI                                            | College .                   |                    |                  |           |           |                   |                                        |

|                    | £ 30               | 7            |         |         | GEOT                                          | ECI             | HNIC     | CAL CO              | RE LOO                                     | RECO                              | RD                            |                           |                  | R         |              | т NUMI<br>2181     |                                 |
|--------------------|--------------------|--------------|---------|---------|-----------------------------------------------|-----------------|----------|---------------------|--------------------------------------------|-----------------------------------|-------------------------------|---------------------------|------------------|-----------|--------------|--------------------|---------------------------------|
| <u></u>            | NTR                | 20           | A       | irton R | load, Tallaght                                |                 |          |                     |                                            |                                   |                               | DRIL                      | LHOLE            | NO        | RC           | 01                 |                                 |
| co                 | OR                 | DINA'        | TES     |         |                                               |                 |          | -                   |                                            |                                   |                               | <b>Notestation</b>        | E DRILLI         | ED        |              | et 2 of<br>05/2019 |                                 |
|                    |                    |              | -       | (mOD)   |                                               |                 |          | RIG TYPE<br>FLUSH   |                                            |                                   | Geo 305<br>Air/Mist           |                           | LOGG             |           |              | 06/2019            | é                               |
|                    | GINE               |              |         |         | oad Properties I<br>Ashony CE                 | Ltd.            |          | CORE DIA            | ION (deg)<br>METER (m                      | m)                                | 1-90<br>78                    | 10.0400                   | LED BY<br>GED BY |           |              | 3SL<br>1.O/She     | a                               |
| Downhole Depth (m) | Core Run Depth (m) | T.C.R.%      | S.C.R.% | R.0.D%  | Fracture<br>Spacing<br>Log<br>(mm)<br>250 505 | Non-intact Zone | bregend  |                     |                                            | Descrip                           | lian                          | Y                         |                  | Depth (m) | Elevation    | Standpipe Details  | SPT (N Value)                   |
| 15                 | 10.50              | a l          |         |         | 9                                             |                 | 00       | SYMMET<br>as gravel | RIX DRILL<br>y cobbly C                    | ING: No red<br>LAY (contin        | covery, obsi<br>ued)          | erved by d                | riller           |           |              | 0 10<br>0          |                                 |
| 'n                 |                    | o            | 0       | 0       |                                               |                 | NU 00010 |                     |                                            |                                   |                               | E.                        |                  | 2000      |              |                    | N ± 65<br>(9, 11, 17,<br>50, 19 |
| 13<br>13<br>14     | 12,00              | 100          | 0       | Q       |                                               |                 | 9 9      | CLAY, Sa            | to hard, me<br>rid is fine.<br>of limestor | dium brown<br>Gravel is an<br>10. | n slightly sa<br>ngular to su | ndy grave<br>brounded     | By .             | 12.00     |              | T.                 | N = 51<br>(7, 4, 11<br>59, 17   |
| 13                 | 13.50              |              |         |         |                                               |                 | 0        |                     |                                            |                                   |                               |                           | 1000             | 13.50     |              |                    |                                 |
|                    |                    |              |         |         |                                               |                 |          | End                 | of Borehold                                | e at 13.50 m                      | 1                             |                           |                  | 100.000   |              | 1                  |                                 |
| 14                 |                    |              |         |         |                                               |                 |          |                     |                                            |                                   |                               |                           |                  |           |              |                    |                                 |
| 15                 |                    |              |         |         |                                               |                 |          |                     | а.                                         |                                   |                               |                           |                  |           |              |                    |                                 |
| 18                 |                    |              |         |         |                                               |                 |          |                     |                                            |                                   |                               | 8                         |                  |           |              |                    |                                 |
|                    |                    |              |         |         |                                               |                 |          |                     |                                            |                                   |                               |                           |                  |           |              |                    |                                 |
| 17                 |                    |              |         |         |                                               |                 |          |                     |                                            |                                   |                               |                           |                  |           |              |                    |                                 |
| 18                 |                    |              |         |         |                                               |                 |          |                     |                                            |                                   |                               |                           |                  |           |              |                    |                                 |
| 18                 |                    |              |         |         | i.                                            |                 |          |                     | <b>3</b> .                                 |                                   |                               |                           |                  |           |              |                    | 9                               |
| -                  | MAR                | and strength |         |         |                                               |                 |          |                     | 141-2                                      | Carlos                            | Caster                        | 0                         | -                | WAT       | TER S        | TRIKE              | DETAILS                         |
| Holi               | e cas              | ed 0         | .00-1   | 2.00m   |                                               |                 |          |                     | Water<br>Strike<br>8.50                    | Casing<br>Depth<br>8.50           | Sealed<br>At<br>No            | Rise<br>To                | Time<br>(min)    | Co        | mmer<br>Slow | 265                |                                 |
| _                  | 107.77             |              | _       |         |                                               |                 |          |                     | 1                                          | Hole                              | Casing                        | Danit 1                   |                  |           |              | WATER              | DETAIL                          |
| INS                | Date               |              |         | ETAILS  | 3<br>Z Top   RZ Base                          | -               | Typ      | 10                  | Date 28-05-19                              | Depth<br>13.50                    | Depth<br>12:00                | Depth to<br>Water<br>4.75 | Com              | ment      | · · · ·      | at 5 prime -       | ther end of                     |

| -                                      | <u>د ا</u>          | -       |         |         | GEOT                                          | ECI             | HNIC         | CAL CORE                           | LOC                 | G RECO                     | RD                        |                          |                 |           |           | 181                           |                                  |
|----------------------------------------|---------------------|---------|---------|---------|-----------------------------------------------|-----------------|--------------|------------------------------------|---------------------|----------------------------|---------------------------|--------------------------|-----------------|-----------|-----------|-------------------------------|----------------------------------|
| co                                     | NTR                 | ACT     | 1       | irton   | Road, Tallaght                                |                 |              |                                    |                     |                            |                           | 1.2382                   | LHOLE           | NO        | RC        |                               | 2                                |
|                                        |                     |         | 1033755 | (mO     | Di                                            |                 |              | RIG TYPE                           |                     |                            | Geo 305                   |                          | E DRILL<br>LOGG |           | 23/0      | et 1 of<br>15/2011<br>15/2011 | 9                                |
| cu                                     | IENT                | 0.      | A       | arton   | Road Properties I<br>Mahony CE                | Lid.            | ļ.           | FLUSH<br>INCLINATION<br>CORE DIAME | 10000000            | im)                        | Air/Mist<br>-90<br>78     | 0.000                    | LED BY          |           |           | SSL                           | 18                               |
| <ul> <li>Downhole Depth (m)</li> </ul> | Core Run Depth (m)  | T.C.R.% | S.C.R.% | R.0.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>250 500 | Non-intact Zone | Legend       |                                    |                     | Descript                   |                           |                          |                 | Depth (m) | Elevation | Standpipe Details             | SPT (N Value)                    |
|                                        | 1.50                | o       | Ø       | o       |                                               |                 |              | SYMMETRIX<br>as very sand          | ( DRILL<br>y grave  | ING: No rec<br>Iy CLAY wit | overy, obs<br>h occasion  | erved by d<br>al cobbles | rillor          |           |           |                               |                                  |
| 2                                      | 1.30                | C       | o       | 0       |                                               |                 | da bi bi ab  | SYMMETRIX<br>as sandy gra          | ( DRILL<br>velly CL | ING: No rec<br>AY with occ | overy, obs<br>asional co  | erved by d<br>bbles      | riller          | 1.50      |           |                               | N = 24<br>(3, 4, 4, 4,<br>7)     |
| 4                                      | <u>3.00</u><br>4.50 | a       | 0       | 0       |                                               |                 | del a ko lor | SYMMETRIX<br>as very sand          | ORILL<br>y grave    | ING: No rec<br>ly CLAY wit | overy, obsi<br>h occasion | erved by d<br>al cobbles | riller          | 3.00      |           |                               | N = 33<br>(12, 9, 7,<br>31, 7)   |
| 5                                      | 8.00                | 0       | 0       | 0       |                                               |                 | 01010 610 K  |                                    |                     |                            |                           |                          |                 |           |           |                               | N - 29<br>(6.5.5.9,<br>9]        |
| 2                                      | 7.50                | 0       | 0       | 0       |                                               |                 | N-DFO DFO    |                                    |                     |                            |                           |                          |                 |           |           |                               | N = 48<br>(7.6, 7, 1<br>11, 20)  |
|                                        |                     | 0       | 0       | 0       |                                               |                 | 0.0.0.0      |                                    |                     |                            |                           |                          |                 |           |           |                               | N = 52<br>(5, 5, 6, 1<br>14, 22) |
| 9                                      | 9.00                | 0       | 0       | O       |                                               |                 | Nd 100 000   | SYMMETRIX<br>as GRAVEL             | DRILL               | ING: No rec                | overy, obse               | arved by d               | riller          | 9.60      |           |                               | N + 54<br>(4, 19, 11,<br>14, 12) |
| lok                                    | MARI<br>e cas       | and 0   | 00-1    | 2.00    | im.                                           |                 |              |                                    | Vater               | Casing                     | Sealed                    | Rise                     | Time            | 100-      | mmen      | 11                            | DETAILS                          |
| 25                                     | -24                 |         | 0.5     |         |                                               |                 |              |                                    | Strike<br>9.60      | 9.60                       | No                        | То                       | (min)           | 5.541     | Slow      | <u> </u>                      |                                  |
|                                        |                     | _       |         |         |                                               |                 |              | 1                                  |                     |                            |                           |                          |                 | GRO       | UNDV      | NATER                         | ROETAILS                         |
| NS                                     | TAL                 |         |         | ETAI    |                                               |                 |              |                                    | Date                | Hole<br>Depth              | Casing<br>Depth           | Depth to<br>Water        | Com             | ments     | -         | ana orta                      |                                  |
| 1                                      | Date                | 3       | ip Di   | apth    | RZ Top IRZ Base                               | -               | Typ          | e                                  |                     |                            |                           |                          |                 |           |           |                               |                                  |

| -                  | E ja               | 1       |         |         | GEOT                               | ECI             | HNIC   | CAL COF             | RE LOO                   | RECO                    | RD                    |                   |                   | R          |              | г NUM<br>2181     |                               |
|--------------------|--------------------|---------|---------|---------|------------------------------------|-----------------|--------|---------------------|--------------------------|-------------------------|-----------------------|-------------------|-------------------|------------|--------------|-------------------|-------------------------------|
| - 22               | NTR                | 2.      | A       | irton   | Road, Tallaght                     |                 |        |                     |                          |                         |                       | DRILL<br>SHEE     | HOLE              | NO         | RC           |                   |                               |
|                    | -ORE               |         |         | (mOE    | n                                  |                 |        | RIG TYPE            |                          |                         | Geo 305               | DATE              | DRILL             |            | 23/0         | 5/2011            | 9                             |
| CLI                | ENT                |         | A       | inton I | Road Properties  <br>Mahony CE     | Ltd.            |        | INCLINATIO          |                          | m)                      | Air/Mist<br>-90<br>78 | 100000            | LED BY<br>GED BY  |            |              | O'She             | 98                            |
| Downhole Depth (m) | Core Run Depth (m) | T.C.R.% | S.C.R.% | R.O.D.% | Fracture<br>Specing<br>Log<br>(mm) | Non-Intact Zone | Legend |                     | t                        | Descript                | ion                   |                   |                   | Depth (m)  | Elevation    | Standpipe Detaits | SPT (N Value)                 |
| 10                 | 10.50              |         |         |         |                                    |                 | 000    | SYMMETR<br>as GRAVE | lix dhill.<br>L (continu | ING: No rec<br>6d)      | overy, obsi           | arved by di       | illor             |            |              |                   | 11.3350                       |
| "                  |                    | 0       | 0       | 0       |                                    |                 | 000000 |                     |                          |                         |                       |                   |                   |            |              |                   | N = 31<br>(2, 3, 7, 5,<br>30) |
| 17                 | 12,00              | ġ.      | -       | _       |                                    |                 | 00     | End o               | f Borehold               | at 12.00 m              | 6                     |                   | 4                 | 12.00      |              |                   | N=25<br>(5.5.5.5              |
| °13                |                    |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   | 201               |            |              |                   | 80                            |
|                    |                    |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   |                   |            |              |                   |                               |
|                    |                    |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   |                   |            |              |                   |                               |
| 14                 |                    |         |         |         |                                    |                 |        | e.                  |                          |                         |                       |                   |                   |            |              |                   |                               |
| 16                 |                    |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   |                   |            |              |                   |                               |
| 17                 |                    |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   |                   |            |              |                   |                               |
| 18                 |                    |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   |                   |            |              |                   |                               |
| 10                 |                    |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   |                   |            |              |                   |                               |
| 1                  | ł                  |         |         |         |                                    |                 |        |                     |                          |                         |                       |                   |                   |            |              |                   |                               |
|                    | MAR                |         | -       | _       |                                    | _               |        |                     |                          |                         |                       |                   |                   | WAT        | ER SI        | FRIKE             | DETAILS                       |
| Hole               | e cas              | ed 0    | .00-1   | 2.00r   | n.                                 |                 |        |                     | Water<br>Strike<br>9.60  | Casing<br>Depth<br>9.60 | Sealed<br>At<br>No    | Rise<br>To        | Time<br>(min)     | Co         | mmen<br>Slow | ts                | 4                             |
|                    |                    |         |         |         |                                    |                 |        | +                   |                          | 1                       | ana ana di            |                   | 10                | GRO        | DUNEN        | NATER             | DETAIL                        |
| INS                | TALL               |         |         | ETAIL   |                                    |                 |        |                     | Date                     | Hole<br>Depth           | Casing<br>Depth       | Depth to<br>Water | Com               | ments      | 5            |                   |                               |
| 1                  | Date               | T       | lp De   | ipthi i | Top RZ Base                        | -               | Ţ'n    | 90                  | 29-05-19                 | 12.00                   | 12.00                 | 3.75              | Water<br>drilling | levvali na | conted a     | d 5 mirrs         | after and of                  |

|                       |                  | 5 1     |         |         | GEOT                                             | ECI             | HNIC   | CAL CO             | RE LOO                  | G RECO                     | RD                  |                                         |               |           |              | 181               |                                 |
|-----------------------|------------------|---------|---------|---------|--------------------------------------------------|-----------------|--------|--------------------|-------------------------|----------------------------|---------------------|-----------------------------------------|---------------|-----------|--------------|-------------------|---------------------------------|
| 01                    | TR/              | ACT     | A       | inton   | Road, Tallaght                                   |                 |        |                    |                         |                            |                     | 226732                                  | HOLEN         | 10        | RC           |                   | 2                               |
| 2                     | ORD              | ANA.    | TES     | 2       |                                                  |                 |        |                    |                         |                            |                     | DATE                                    | DRILLE        | D         |              | st 1 of<br>6/2019 |                                 |
| -                     |                  | DLE     | VEL     | (mO     | D)                                               |                 |        | RIG TYPE<br>FLUSH  |                         |                            | Geo 305<br>Air/Mist | - 2007 <i>/</i>                         | LOGGE         |           | 1000         | 6/2019            |                                 |
|                       | INE              | ER      |         |         | Road Properties<br>Mehony CE                     | .td.            |        | INCLINATI          |                         | m)                         | -90<br>78           | 100000000000000000000000000000000000000 | ED BY         |           |              | SL<br>O'She       | а                               |
| T                     | Ê                |         |         |         |                                                  |                 | Γ      |                    |                         |                            | - Aliante in        |                                         |               |           |              |                   | [                               |
| had and an anomalance | Core Run Depth ( | T.C.R.% | S.C.R.% | R.O.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>9. 250 500 | Non-intact Zone | Legend |                    |                         | Descript                   | ion                 |                                         |               | Depth (m) | Elevation    | Standpipe Details | SPT (N Value)                   |
| I                     |                  |         |         |         |                                                  |                 | 0.0    |                    |                         | ING: No rec<br>AY with occ |                     |                                         | ller          |           |              |                   |                                 |
|                       |                  | 0       | 0       | 0       |                                                  |                 | 8      |                    |                         |                            |                     |                                         |               |           |              |                   |                                 |
|                       | .50              |         |         |         |                                                  |                 | Pole t |                    |                         |                            |                     |                                         |               | .50       | 2            |                   |                                 |
| ſ                     |                  |         |         |         |                                                  |                 | 0.00   | SYMMET<br>as sandy | RIX DRILL<br>GRAVEL     | ING: No rec                | overy, obs          | erved by dr                             | ller          |           |              |                   | N = 25<br>(3, 7, 9, 5, 5,<br>7] |
|                       |                  | 0       | 0       | 0       |                                                  |                 | 00     |                    |                         |                            |                     |                                         |               |           |              |                   | 035                             |
|                       | 100              |         |         |         | -                                                |                 | 00     |                    |                         |                            |                     |                                         |               |           |              |                   |                                 |
| ľ                     |                  |         |         |         |                                                  |                 | 20     |                    |                         |                            |                     |                                         |               |           |              |                   | N = 37<br>(2. 2, 14, 7, a<br>8) |
|                       | 2                | 0       | 0       | 0       |                                                  |                 | 00     |                    |                         |                            |                     |                                         |               |           |              |                   |                                 |
|                       |                  |         |         |         |                                                  |                 | 00     | 1                  |                         |                            |                     |                                         |               |           |              |                   |                                 |
| ľ                     | 1.50             |         | -       |         |                                                  |                 | 0000   |                    |                         |                            |                     |                                         |               |           |              |                   | (3, 2, 3, 4, 3,<br>4)           |
|                       |                  | a       | o       | 0       |                                                  |                 | 00     |                    |                         |                            |                     |                                         |               |           |              |                   | 4                               |
|                       |                  | e       |         |         |                                                  |                 | 00     |                    |                         |                            |                     |                                         |               |           |              |                   |                                 |
| ľ                     | 5.00             | -       | -       |         |                                                  |                 | 0000   |                    |                         |                            |                     |                                         |               |           |              |                   | N=15<br>(2.2,2,3,5,             |
|                       |                  | O.      | 0       | 0       |                                                  |                 | 0.00   |                    |                         |                            |                     |                                         |               |           | 1            |                   | 8)                              |
|                       |                  |         |         |         |                                                  |                 | 0.00   |                    |                         |                            |                     |                                         |               |           |              |                   |                                 |
| 1                     | 7.50             | -       |         |         |                                                  |                 | 000    |                    |                         |                            |                     |                                         |               |           |              |                   | N = 22<br>(3, 4, 5, 5, 6,<br>5) |
|                       |                  | 0       | 0       | 0       |                                                  |                 | 000    |                    |                         |                            |                     |                                         |               |           |              |                   | 6)                              |
|                       |                  | 1       | 2.05    |         |                                                  |                 | 00     |                    |                         |                            |                     |                                         |               |           |              |                   |                                 |
| 1                     | 2.00             | -       | -       |         |                                                  |                 | 00     |                    |                         |                            |                     |                                         |               |           |              |                   | N = 12<br>(2, 2, 2, 3, 3,<br>4) |
|                       |                  | 0       | 0       | 0       |                                                  |                 | 0000   |                    |                         |                            |                     |                                         |               |           |              |                   | 4)                              |
| N                     | IARI             | cs      |         |         | L                                                |                 | 100    | 1                  |                         |                            |                     | Pri                                     |               | WAT       | ER ST        | FISKE             | DETAILS                         |
| le                    | cas              | ed 0    | 00-1    | 2.00    | )m.                                              |                 |        |                    | Water<br>Strike<br>1.90 | Casing<br>Depth<br>1.90    | Sealed<br>At<br>No  | Fise<br>To                              | Time<br>(min) | Co        | mmen<br>Slow | IS                |                                 |
|                       |                  |         |         |         |                                                  |                 |        |                    | 1.90                    | 1.50                       | NU                  |                                         |               |           | 31011        |                   |                                 |
|                       |                  |         |         |         |                                                  |                 |        |                    |                         | Section of the             |                     | 1                                       |               | GRO       | UNDY         | VATER             | DETAILS                         |
|                       |                  | -       |         | ETA     |                                                  |                 |        |                    | Date                    | Hole                       | Casing              | Depth to<br>Water                       | Com           |           | -            |                   | *********                       |

|                    | e-1,               | 4                     |       |         | GEOT                                             | ECI             | HNIC                                    | CAL CORE LO                    | OG REC       | ORD           |      |                   |        | R         | 99522315<br> |                   | 3.085<br>2.085               |
|--------------------|--------------------|-----------------------|-------|---------|--------------------------------------------------|-----------------|-----------------------------------------|--------------------------------|--------------|---------------|------|-------------------|--------|-----------|--------------|-------------------|------------------------------|
|                    | SS                 | Z.,                   | A     | irtan   | Road, Tallaght                                   |                 |                                         |                                |              |               |      | 32120             | LHOLE  | NO        | RC           |                   |                              |
| co                 | ORE                | INA                   | TES   | -       |                                                  | _               |                                         |                                |              |               | -    | SHEE              | 1000   |           |              | st 2 of           | 10                           |
| GR                 | OUN                | DLE                   | VEL   | (mOt    | D¥                                               |                 |                                         | RIG TYPE<br>FLUSH              |              | Geo S         |      |                   | LOGG   |           |              | 6/2011            |                              |
| CLI                | ENT                |                       | A     | inton   | Road Properties                                  | Ltd.            |                                         | INCLINATION (deg               |              | Air/Mi<br>-90 | sl   | DRIL              | LED BY | 1         | IG           | ISL               |                              |
|                    | INE                | ER                    | 8     | arrett  | Mahony CE                                        | -               | r                                       | CORE DIAMETER                  | (mm)         | 78            |      | LOG               | GED BY | -         | D            | O'She             | a                            |
| Downhole Depth (m) | Core Run Depth (m) | T.C.R.%               | SCR%  | R.O.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>p. 250 500 | Non-Intact Zone | Legend                                  |                                | Desc         | ription       |      |                   |        | Depth (m) | Elevation    | Standpipe Details | SPT (N Value)                |
| 10                 | 0.50               | 11                    |       |         |                                                  |                 | 000                                     | SYMMETRIX DR<br>as sandy GRAVE | LLING: No    | ecovery,      | obse | rved by di        | rillar |           |              |                   | 0.00                         |
| -13                | 0.30               | 0                     | 0     | ٥       | × (                                              |                 | 000000000000000000000000000000000000000 | 1                              |              |               |      |                   |        |           |              |                   | N = 32<br>(4, 7, 7, 8,<br>9) |
| 12                 | 12.00              | į.,                   |       |         |                                                  |                 | 0.0                                     |                                |              |               |      |                   | /      | 12.00     |              |                   |                              |
| 12                 |                    |                       |       |         |                                                  |                 |                                         | End of Borel                   | nole at 12.0 | m (           |      |                   |        |           |              |                   | N 0 24<br>(3, 3, 3, 5<br>9)  |
|                    |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   | 244                          |
| я                  |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
|                    |                    | ģ                     |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        | - 3       |              |                   |                              |
| 14                 |                    | 2                     |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
| 14                 |                    | i j                   |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
| - A. C. I.         |                    |                       |       |         | ŵ.                                               |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
| 15                 |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
|                    |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
| 16                 |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
|                    |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
| 17                 |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
|                    |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
| 18                 |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
| 19                 |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        |           |              |                   |                              |
|                    |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        | 177,81.7  |              |                   |                              |
| -                  | AR                 | and the second second | 00.4  | 2.00    |                                                  |                 |                                         | Wate                           | r Casing     | Seale         |      | Rise              | Time   | 1.000     |              |                   | DETAILS                      |
| TON                | a CBS              | 90.0                  | -00-1 | 2.00    |                                                  |                 |                                         | Strike<br>1.90                 | Depth        | At            |      | To                | (min)  | Co        | mmen<br>Slow | ts                |                              |
|                    |                    |                       |       |         |                                                  |                 |                                         |                                | 100          | 1             |      |                   |        |           | 200          |                   |                              |
|                    |                    |                       |       |         |                                                  |                 |                                         |                                |              |               |      |                   |        | (PP)      | VIRGINI      | MATER             | DETAIL                       |
|                    |                    |                       |       | _       |                                                  |                 |                                         |                                |              | -             |      |                   | 100    | LANIL     | VOINDA       | AIC               | DETAIL                       |
| NS                 | TAL                | ATIC                  | ON D  | ETAI    | LS                                               |                 |                                         | Dat                            | e Hok<br>Dep |               | ng   | Depth to<br>Water | Com    | ments     | 6            |                   | 1000000000                   |

|                    | 1 1<br>1<br>1<br>1<br>1<br>1 | 4       |         |         | GEOT                                             | ECI             | HNIC           | CAL CO               | RELOO                    | RECO                       | RD                          |                                       |                          | RI        |           | 181                           |                                 |
|--------------------|------------------------------|---------|---------|---------|--------------------------------------------------|-----------------|----------------|----------------------|--------------------------|----------------------------|-----------------------------|---------------------------------------|--------------------------|-----------|-----------|-------------------------------|---------------------------------|
| co                 | NTRA                         | ACT     | A       | irton   | Road, Tallaght                                   |                 |                |                      |                          |                            |                             | 1.11.11.11.11.11                      | LHOLE                    | NO        | RC        | 20.000                        |                                 |
|                    | ORC                          |         |         |         |                                                  |                 |                | RIG TYPE             |                          |                            | Geo 305                     | 100,000                               | et<br>E daille<br>E logg |           | 04/0      | et 1 of<br>18/2011<br>16/2011 | 9                               |
| -                  | OUN                          | DLE     |         |         | D)<br>Road Properties                            | w.              | -              | FLUSH                | ON (den)                 |                            | Ain/Mist<br>-90             |                                       | LED BY                   | e que su  | 2006      | SL                            |                                 |
| 1000               | INE                          | ER      |         |         | t Mahony CE                                      | State -         |                | CORE DIA             |                          | m)                         | 78                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | GED BY                   |           | 2.578     | O'She                         |                                 |
| Downhole Depth (m) | Core Run Depth (m)           | T.C.R.% | S.C.R.% | R.O.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>p. 250 spa | Non-intact Zone | Legend         |                      |                          | Descript                   | ion                         |                                       |                          | Depth (m) | Elevation | Standpipe Details             | SPT (N Value)                   |
| 0                  | 1.50                         | o       | o       | 0       |                                                  |                 | 00000000       | SYMMET<br>as sandy   | RIX DRILL<br>GRAVEL      | ING: No rec                | overy, obsi                 | rved by d                             | riller                   | 1.50      |           |                               |                                 |
| z                  | 3.00                         | ¢       | o       | 0       |                                                  |                 | 10, DI 0, DI 0 | SYMMET<br>as sandy ( | RIX DRILL<br>gravelly CL | ING: No rec<br>AY with occ | overy, obsi<br>casional col | erved by d<br>obles                   | riller                   | 1.00      |           |                               | N = 19<br>[2, 3, 3, 4, 7<br>9]  |
| •                  | 4.50                         | o       | o       | o       |                                                  |                 | 010101010      |                      |                          |                            |                             |                                       |                          | 4.50      |           |                               | N # 16<br>(3.3.3.3.1<br>5)      |
| 5                  |                              | 0       | 0       | o       |                                                  |                 | 0000           | SYMMET<br>as cobbly  |                          | NG: No rec                 | overy, obsi                 | erved by d                            | riller                   | 3.00      |           |                               | N = 14<br>(8, 2, 4, 3, 1<br>4)  |
| 7                  | 6.00                         | •       | Q       | ٥       |                                                  |                 | 00000          |                      |                          |                            |                             | -                                     |                          | 0.00      |           |                               | N = 18<br>(3, 8, 4, 4, 5<br>0)  |
|                    | 7.59                         | õ       | o       | 0       |                                                  |                 | 02000          | SYMMETI<br>as cobbly |                          | ING: No rec                | overy, obsi                 | M. Stanger                            | ritler                   | 7.50      |           |                               | N = 36<br>(5.7, 11, 8,<br>9)    |
| 0                  | 9.00                         | 0       | a       | o       |                                                  |                 | 00000000       | SYMMETI<br>as GRAVE  | rix drillu<br>El         | ING: No rec                | overy, obsi                 | arved by d                            | riller                   | 9.00      |           |                               | N = 29<br>(4, 0, 8, 9, 9<br>11) |
| Tel                | AR                           | (S      | .00-1   | 2.00    | lm.                                              |                 |                |                      | Water                    | Casing                     | Sealed                      | Rise                                  | Time                     | 1 1 2 2 3 |           |                               | DETAILS                         |
|                    | - usla                       |         |         |         |                                                  |                 | Ð              |                      | Strike<br>8,50           | Depth<br>8.50              | At<br>No                    | To                                    | (min)                    | -         | Slow      | 115                           |                                 |
|                    |                              |         |         |         |                                                  |                 |                |                      |                          |                            |                             |                                       |                          | GRO       | UNDA      | VATER                         | RDETAILS                        |
| NS                 | TALL                         |         |         |         |                                                  |                 |                |                      | Date                     | Hole<br>Depth              | Casing<br>Depth             | Depth to<br>Water                     | Corr                     | ments     |           |                               |                                 |
|                    | )ate                         | T       | ip De   | apth    | RZ Top RZ Base                                   |                 | Typ            | e                    |                          |                            |                             |                                       |                          |           |           |                               |                                 |

| ~                  | r h                | A       |       |         | GEOT                                          | ECI             | HNIC                                    | CAL COF    | RELOG                    | RECO                            | RD                    |                   |                  | R         |              | 181               |                                 |
|--------------------|--------------------|---------|-------|---------|-----------------------------------------------|-----------------|-----------------------------------------|------------|--------------------------|---------------------------------|-----------------------|-------------------|------------------|-----------|--------------|-------------------|---------------------------------|
| 123                | SS<br>NTR/         | 1       | A     | iton F  | Road, Tailaght                                |                 |                                         |            |                          |                                 |                       | DRILL             | LHOLE            | NO        | RC           |                   |                                 |
|                    |                    | INAT    |       | (mOD    | 0                                             |                 |                                         | RIG TYPE   |                          |                                 | Geo 305               | DATE              | DRILLI<br>LOGGI  |           | 04/0         | 6/2019<br>6/2019  | 1                               |
| CLI                | ENT                | 6.11    | A     | irton F | ,<br>Road Properties I<br>Mehony CE           | .td.            |                                         | INCLINATIO |                          | m)                              | Air/Mist<br>-90<br>78 | C 5527            | LED BY<br>GED BY |           |              | ISL<br>O'She      | a                               |
| Downhole Depth (m) | Core Run Depth (m) | T.C.R.% | SCR%  | R.O.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>250 spo | Non-intact Zone | Legend                                  |            |                          | Descript                        | ion                   | 0 10              |                  | Depth (m) | Bevation     | Standpipe Details | SPT (N Value)                   |
| 10                 | 10.50              | 0       | 0     | 0       |                                               |                 | 000000000000000000000000000000000000000 | as GRAVE   | L (continu<br>IIX DRILLI | NG: No rec<br>ed)<br>NG: No rec |                       |                   |                  | 10.50     |              |                   | No 43<br>(5, 6, 6, 1<br>12, 12) |
| 12                 | 2.00               | -       | _     | _       |                                               |                 | 5                                       | End o      | f Borehole               | at 12.00 m                      |                       |                   | _                | 12.00     | 100          |                   | N = 32<br>15, 7, 7, 7,<br>93    |
| 13                 |                    |         |       |         |                                               |                 |                                         |            |                          |                                 |                       |                   |                  |           |              |                   |                                 |
|                    |                    |         |       |         |                                               |                 |                                         |            |                          |                                 |                       | 3                 |                  |           |              |                   |                                 |
| 14                 |                    |         |       |         |                                               |                 |                                         |            |                          |                                 |                       |                   |                  |           |              |                   |                                 |
| 15                 |                    |         |       |         |                                               |                 |                                         |            |                          |                                 |                       |                   |                  |           |              |                   |                                 |
| 18                 |                    |         |       |         |                                               |                 |                                         |            |                          |                                 |                       |                   | Ì                |           |              |                   |                                 |
| 17                 |                    |         |       |         |                                               |                 |                                         |            |                          |                                 |                       |                   |                  |           |              |                   |                                 |
|                    |                    |         |       |         |                                               |                 |                                         |            |                          |                                 | <u>(</u>              |                   |                  |           |              |                   |                                 |
| 18                 |                    |         |       |         |                                               |                 | 17                                      |            |                          |                                 |                       |                   |                  |           |              |                   |                                 |
| 10                 |                    |         |       |         |                                               |                 |                                         |            |                          |                                 |                       |                   |                  |           |              |                   |                                 |
| REN                | AFI                | cs      |       |         | 1                                             | _               |                                         | L          |                          |                                 | _                     |                   |                  | WAT       | ER ST        | RIKE              | DETAILS                         |
| iole               | e cas              | ed 0    | .00-1 | 2.00n   | n,                                            |                 |                                         |            | Water<br>Strike<br>8.50  | Casing<br>Depth<br>8.50         | Sealed<br>At<br>No    | Rise<br>To        | Time<br>(min)    | Co        | mmen<br>Slow | ts                |                                 |
| _                  |                    |         |       |         |                                               |                 | _                                       |            |                          | 11                              |                       |                   |                  | GRO       | UNDV         | NATER             | DETAIL                          |
|                    |                    |         |       | ETAIL   |                                               |                 | -                                       |            | Date                     | Hole<br>Depth                   | Casing<br>Depth       | Depth to<br>Water |                  | ments     |              |                   |                                 |
| -                  | Date               | T       | ip De | epth F  | IZ Top IRZ Base                               | -               | Ty                                      | 0e         | 04-05-19                 | 12:00                           | 12.00                 | 4.90              |                  | leval ro  | conded a     | t 5 métai         | atter ent of                    |

| 24  | 53                 | 4           |      |         | GEOT                                            | EC               | HNIC         | CAL COR                 | ELOO                  | G RECO                     | RD                         |                           |            |           |           | 181               |                                  |
|-----|--------------------|-------------|------|---------|-------------------------------------------------|------------------|--------------|-------------------------|-----------------------|----------------------------|----------------------------|---------------------------|------------|-----------|-----------|-------------------|----------------------------------|
| 01  | VTR                | ACT         | A    | irton   | Road, Tallaght                                  |                  |              |                         |                       |                            |                            | DRILL<br>SHEE             | LHOLE<br>T | NO        | RC        | 05<br>at 1 of     | 2                                |
|     |                    |             |      | (mOl    |                                                 |                  |              | RIG TYPE                |                       |                            | Geo 305                    | DATE                      | DRILL      |           | 30/0      | 5/201             | 9                                |
|     | ENT                | DLE         |      |         | Road Properties                                 | Lid.             |              | FLUSH                   | N (dec)               |                            | Air/Mist<br>-90            |                           | LED BY     | 5.02      | 1874.0    | iSL               |                                  |
| T   | INE                | ER          | 8    | anett   | Mahony CE                                       |                  | -            | CORE DIAM               | ETER (m               | m)                         | 78                         | LOGO                      | ED B       | -         | D         | O'She             | ia                               |
| - 1 | Core Run Depth (m) | T.C.R.%     | SCA% | R.O.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>p 250 500 | Non-trisact Zone | Legend       |                         |                       | Descript                   |                            |                           |            | Depth (m) | Elevation | Standpipe Details | SPT (N Value)                    |
|     | 1.50               | ٥           | 0    | 0       |                                                 |                  | P10-010-010  | SYMMETRI<br>as sandy gr | avelly CL             | ING: No rec<br>AY with acc | overy, obs<br>asional col  | nved by dr<br>bles        | iller      |           |           |                   |                                  |
|     | 3.00               | ٥           | 0    | 0       |                                                 |                  | 0.010        |                         |                       |                            |                            |                           |            |           |           |                   | N+21<br>(3.3.4.5.<br>6)          |
|     | 4.50               | 0           | o    | 0       |                                                 |                  | NO PRO 10 DI |                         |                       |                            |                            |                           |            |           |           |                   | N = 30<br>(9, 12, 7, 7<br>10)    |
|     | 8.00               | 0           | ٥    | 0       |                                                 |                  | 010 010 010  |                         | R                     |                            |                            |                           |            |           |           |                   | N = 38<br>(4, 4, 5, 5,<br>14)    |
|     | 7.50               | O           | ø    | o       |                                                 |                  | 000100       |                         |                       |                            |                            |                           |            |           |           |                   | 19, 11, 10,<br>11, 52)           |
| i.  |                    | a           | o    | ø       |                                                 |                  | A PAPIS      |                         |                       |                            |                            |                           |            |           |           |                   | N = 47<br>(7, 7, 7, 1<br>12, 14) |
|     | 9.00               | 0           | 0    | 0       |                                                 |                  | FID 0 0      | SYMMETRI<br>as very san | IX DRILL<br>dy gravel | ING: No rec<br>ly CLAY wit | overy, obse<br>h occasions | arved by di<br>al cobbles | iler       | 9.00      |           |                   | N = 65<br>(9, 12, 38,<br>10, 15) |
| EN  | AR                 | KS<br>and 0 | .00- | 12.00   | lm.                                             | -                |              | -                       | Water                 | Casing                     | Sealed                     | Rise                      | Time       |           | mmen      | ana mana a        | DETAILS                          |
| 1   |                    |             | 000  |         |                                                 |                  |              |                         | Strike<br>6.90        | Depth<br>8.90              | At<br>No                   | To                        | (min)      |           | Słow      |                   |                                  |
|     |                    |             |      |         |                                                 |                  |              |                         | 1                     |                            |                            | 100000                    |            | GRO       | DUND      | NATE              | R DETAILS                        |
| 451 | TALL               |             |      | ETAI    |                                                 | 23               | _            |                         | Date                  | Hole                       | Casing<br>Depth            | Depth to<br>Water         | Corr       | menta     | B.        |                   |                                  |
|     | Date               | T           | ip D | epthi   | RZ Top. RZ Base                                 | 2                | Ţy           | 8                       |                       |                            |                            |                           |            |           |           |                   |                                  |

| ~                  | 6 ]<br>(33        | 2       |         |         | GEOT                                            | ECI             | HNIC   | CAL COF                   | RE LOG          | RECO                     | RD                         |                           |                  | R         |           | 181               |                              |
|--------------------|-------------------|---------|---------|---------|-------------------------------------------------|-----------------|--------|---------------------------|-----------------|--------------------------|----------------------------|---------------------------|------------------|-----------|-----------|-------------------|------------------------------|
| co                 | NTRA              | ACT     | A       | irton   | Road, Tailaght                                  |                 |        |                           |                 |                          |                            | 1.000                     | LHOLE            | NO        | RC        | 7.792 Aug         |                              |
| co                 | ORD               | ANA     | TES     |         |                                                 |                 | 1      |                           |                 |                          |                            | DATE                      | DRILL            | ED        |           | at 2 of<br>5/2019 |                              |
|                    | -                 | D LE    | VEL     | (mOl    | 0                                               |                 |        | RIG TYPE<br>FLUSH         |                 |                          | Geo 305<br>Air/Mist        | DATE                      | LOGG             | ED        | 31/0      | 5/2019            | 1                            |
|                    | ENT               | ER      |         |         | Road Properties I<br>Mehony CE                  | Ltd             |        | INCLINATIO                |                 | m)                       | -90<br>78                  | 1200162                   | LED BY<br>GED BY |           |           | SL<br>O'She       |                              |
| Ê                  | Ê                 |         | 2.0     |         |                                                 |                 | Γ.     |                           |                 |                          |                            | 1.55.55                   |                  |           |           |                   |                              |
| Downhols Depth (m) | Core Run Depth () | T.C.R.% | S.C.R.% | R.O.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>p 250 soo | Non-Intact Zone | Legend |                           |                 | Descript                 |                            |                           |                  | Depth (m) | Elevation | Standpipe Details | SPT (N Value)                |
| 10                 | 10.50             | ļ,      |         |         |                                                 |                 | 19     | as very sar               | ndy gravel      | NG: No rec<br>y CLAY wit | overy, obse<br>h occasion: | erved by di<br>al cobbles | niller           |           |           |                   |                              |
|                    | 10.50             | 1       |         |         |                                                 |                 | 0 10   | (continued)               | 1               | *                        |                            |                           |                  |           |           |                   | N=27<br>(17, 12, 6,<br>7, 7) |
| 11                 |                   | 0       | 0       | 0       |                                                 |                 | 00010  |                           |                 |                          |                            |                           | 0.040            |           |           |                   | 7,7)                         |
| 12                 | 12.00             | 9       | _       | -       |                                                 |                 | 9      | Very still to             | hard me         | dium brown               | sightly on                 | ody orausi                |                  | 12.00     |           |                   | N= 2950                      |
|                    |                   |         |         |         |                                                 |                 |        | CLAY, Sar<br>to coarse of | id is fine. (   | Gravel is an             | gular to sut               | prounded (                | ine              |           |           |                   | (27, 29)                     |
|                    |                   | 0       | 0       | 0       |                                                 |                 | 0.10   |                           |                 |                          |                            |                           | - 7              |           |           |                   |                              |
| 13                 | 3.50              | _       |         |         |                                                 |                 | 0      |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
|                    | 3.70              | 0       | 0       | 0       |                                                 |                 | -0     | End o                     | f Borehole      | at 13.70 m               |                            |                           | 17.0             | 13.70     |           |                   |                              |
| 54                 |                   |         |         |         |                                                 |                 |        |                           |                 |                          |                            |                           | 2                |           |           |                   |                              |
|                    |                   |         |         |         | 1                                               |                 |        |                           |                 |                          |                            |                           | ī                |           |           |                   |                              |
| 18                 |                   | Š.      |         |         |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
|                    |                   |         |         | 3       |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
| 16                 |                   |         |         |         |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
|                    |                   |         |         |         | Ē                                               |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
| 17                 |                   |         |         |         |                                                 |                 |        |                           | 9               |                          |                            |                           |                  |           |           |                   |                              |
|                    |                   |         |         |         | 1                                               |                 |        |                           | 1               |                          |                            |                           |                  |           |           |                   |                              |
|                    |                   |         |         |         |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
| 18                 |                   |         |         |         |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
|                    |                   |         |         |         |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
| 19                 |                   |         |         |         |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
|                    |                   |         |         |         |                                                 |                 |        |                           |                 |                          |                            |                           |                  |           |           |                   |                              |
| REA                | AAR               | s       | _       | _       |                                                 | _               |        |                           |                 |                          | w                          |                           |                  | WAT       | ERS       | RIKE              | DETAILS                      |
| lole               | e cas             | ed 0    | .00-1   | 2.00    | AI.                                             |                 |        |                           | Water<br>Strike | Casing<br>Depth          | Sealed<br>At               | Rise<br>To                | Time<br>(min)    | Co        | mmen      | ts                |                              |
|                    |                   |         |         |         |                                                 |                 |        |                           | 6.90            | 8.90                     | No                         |                           |                  |           | Slow      |                   |                              |
|                    |                   |         |         |         |                                                 |                 |        | -                         |                 |                          |                            |                           |                  | GRO       | UNDA      | VATER             | DETAIL                       |
| NST                | TALL              |         |         | ETAI    |                                                 |                 |        |                           | Date            | Hole<br>Depth            | Casing<br>Depth            | Depth to<br>Water         |                  | ment      |           |                   |                              |
| _                  | Date              | T       | ip De   | ept?r   | RZ Top RZ Base                                  |                 | Typ    | 8                         | 31-05-19        | 13,70                    | 12.00                      | 4.50                      |                  | lovel re- | corded a  | t 5 mine          | ahar and of                  |

| -   | e -                |            |      |       | GEOT                                            | ECI             | HNIC          | CAL CO                         | RELOO                | G RECO                     | RD                       |                           |                  | R         |           | 181<br>2181                   |                                      |
|-----|--------------------|------------|------|-------|-------------------------------------------------|-----------------|---------------|--------------------------------|----------------------|----------------------------|--------------------------|---------------------------|------------------|-----------|-----------|-------------------------------|--------------------------------------|
| 0   | NTR                | ACT        | A    | inton | Road, Tallaght                                  |                 |               |                                |                      |                            |                          | DRIL                      | LHOLE            | NO        | RC        |                               | 2                                    |
|     |                    | DINA       |      | (mO   | D)                                              | 2311            |               | RIG TYPE                       |                      |                            | Geo 305                  | DATE                      | DRILL            |           | 06/0      | et 1 of<br>26/2019<br>26/2019 | 1                                    |
| :   | ENT                |            | A    | inton | Road Properties<br>Mahony CE                    | Ltd.            |               | FLUSH<br>INCLINATI<br>CORE DIA | ON (deg)<br>METER (m | m)                         | Air/Mist<br>-90<br>78    | 10000                     | LED BY<br>GED BY |           |           | 35L<br>).O'She                | a                                    |
| now | Core Run Depth (m) | T.C.R.%    | SCR% | AQD%  | Fracture<br>Spacing<br>Log<br>(mm)<br>p 250 500 | Non-Intact Zone | Legend        |                                |                      | Descript                   | ion                      |                           |                  | Depth (m) | Elevation | Standpipe Details             | SPT (N Value)                        |
| 1   | 1.50               | ø          | 0    | o     |                                                 |                 | 10-00 0H 0-10 |                                |                      | ING: No rec<br>AY with occ |                          |                           | riller           |           |           |                               |                                      |
|     | 3.00               | o          | D    | a     |                                                 |                 | 0 0 0 0       |                                | a)<br>A              |                            |                          |                           |                  |           |           |                               | N = 28<br>(7, 2, 3, 14,<br>4)        |
| 2   | 4.50               | 0          | a    | o     |                                                 |                 | 10-01 010 0   |                                |                      | <u></u>                    |                          |                           |                  | 4.50      |           |                               | N = 23<br>(3, 3, 3, 3, 3<br>5)       |
|     | 6.00               | a          | ٥    | o     |                                                 |                 | D D D D C     | as very sa                     | ndy gravel           | ING: No rec<br>ly CLAY wit | overy, oos<br>h occasion | erved by di<br>ai cobbies | hier             | 6.00      |           |                               | N = 24<br>(2, 3, 4, 4, 1<br>6)       |
|     |                    | 0          | Q.   | 0     |                                                 |                 | 000000000     | SYMMET<br>as claysy            | RIX DRILLI<br>GRAVEL | ING: No rec                | ovary, obsi              | erved by d                | iller            |           | 31        |                               | N = 25<br>(3.4,4,5,6<br>7)           |
| •   | 7.50               | 0          | ø    | ٥     |                                                 |                 | 10 0 0 0      |                                |                      | ING: No rec<br>AY with occ |                          |                           | illar            | 7.50      |           |                               | N = 27/225<br>non<br>(7. 0. 9. 6, 14 |
| 1   | 9.00               | ٥          | D    | 0     |                                                 |                 | 00000         | SYMMET<br>as sandy             | RIX DRILLI<br>GRAVEL | ING: No rec                | overy, obsi              | erved by dr               | iller            | 9.00      |           | A colored as                  |                                      |
| EN  | AR                 | KS<br>ad 0 | 00-1 | 2.00  | m.                                              |                 |               |                                | Water                | Casing                     | Sealed                   | Rise                      | Time             | 100       | mmer      | Concernance of the            | DETAILS                              |
|     |                    |            |      |       |                                                 |                 |               |                                | Strike<br>5.70       | Depth<br>5.70              | At<br>No                 | To                        | (min)            | 00        | Slow      |                               |                                      |
|     |                    |            |      |       |                                                 |                 |               |                                |                      |                            |                          |                           |                  | CP        | MINES     | WATER                         | DETAILS                              |
| is1 | TAL                | ATK        | ON D | ETA   | LS                                              | -               |               |                                | Date                 | Hole                       | Casing                   | Depth to<br>Water         | Com              | ment      |           | MAILER                        | DETAILS                              |
| E   | Date<br>06-1       | T          |      | apth  | RZ Top RZ Base<br>1.00 12.00                    | +               | Typ<br>50mm   |                                |                      | Depth                      | Depth                    | wator                     |                  |           |           |                               |                                      |

| 1                  | 1                  | -       |         |                     | 1922201                                       |                 |             |                                | 205899                             | 93.032              |                   |               | R         | EPOR      | TNUM              | BER                   |
|--------------------|--------------------|---------|---------|---------------------|-----------------------------------------------|-----------------|-------------|--------------------------------|------------------------------------|---------------------|-------------------|---------------|-----------|-----------|-------------------|-----------------------|
| ~                  | -<br>193           | 5       |         |                     | GEOT                                          | EC              | HNIC        | CAL CORE L                     | OG REC                             | ORD                 |                   |               |           | 2         | 2181              | 3                     |
| co                 | NTR                | ACT     | A       | irton               | Road, Tallaght                                | -               |             |                                |                                    |                     | 10000             | LHOLE         | NO        | RC        |                   | 362                   |
| 60                 | ORC                | INA     | TES     | $\mathcal{L}^{(2)}$ |                                               |                 |             |                                | 1                                  |                     | SHE<br>DAT        | et<br>E drill | ED        | 1000      | et 2 of           |                       |
| GR                 | OUN                | DLE     | VEL.    | (mOE                | 5)                                            |                 |             | RIG TYPE<br>FLUSH              |                                    | Geo 305<br>Air/Mist | 10000             | ELOGG         | 7.2.10    |           | 06/201            |                       |
|                    | GINE               | -       |         |                     | Road Properties<br>Mahony CE                  | Ltd.            |             | INCLINATION (de)               |                                    | -90                 |                   | LED B         |           |           | SSL               | e.                    |
| 100                |                    |         |         | aneu                | Mariony GC                                    |                 | 1           | CONE DIAMETER                  | (mm)                               | 78                  | 100               | GEDB          |           | -         | O'She             | 8                     |
| Downhole Depth (m) | Core Run Depth (m) | T.C.R.% | S.C.R.% | R.O.D.%             | Fracture<br>Spacing<br>Lóg<br>(mm)<br>250 500 | Non-intact Zone | Legend      |                                | Descr                              |                     |                   |               | Depth (m) | Elevation | Standpipe Details | SPT (N Value)         |
| 10                 | 10.50              |         |         |                     |                                               |                 | 000         | SYMMETRIX DR<br>as sandy GRAVE | LLING: No i<br>L <i>(continued</i> | recovery, obs       | served by a       | triller       |           |           | 0 10              |                       |
|                    | 102                |         |         |                     |                                               |                 | 00          | 1                              |                                    |                     |                   |               |           |           |                   | N = 30<br>(4, 8, 8, 7 |
| Ħ                  |                    | 0       | ٥       | 0                   |                                               |                 | 00          | 1                              |                                    |                     |                   |               |           |           | e III             | 69                    |
|                    | 200                | 1       |         |                     |                                               |                 | 00          | 1                              |                                    |                     |                   |               |           |           | ° Ilie            |                       |
| 12                 | 12.00              |         | -       | -                   |                                               |                 | -0          | End of Sore!                   | ole at 12.00                       | ) m                 |                   |               | 12.00     |           | -8-               | N=41<br>(3.5.9.9      |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           | (         |                   | (2, 5, 9, 9, 12)      |
| 13                 |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         | 1       |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
| 14                 |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
| 15                 |                    |         |         |                     |                                               |                 |             | †1i                            |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
| 16                 |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   | 1             |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             | ¥2                             |                                    |                     |                   |               |           |           |                   |                       |
| 16                 |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
| 16                 |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
| 19                 |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                |                                    |                     |                   |               |           |           |                   |                       |
|                    | ARK<br>case        |         | 00-1    | 2 000               | п,                                            |                 | -           | Wate                           | Casing                             | Sealed              | Rise              | Time          |           | ER S'     |                   | DETAILS               |
|                    |                    |         |         |                     |                                               |                 |             | Strike<br>5.70                 | 5.70                               | At<br>Na            | То                | <u>(min)</u>  | 1.00      | Slow      |                   |                       |
|                    |                    |         |         |                     |                                               |                 |             |                                | A suggest                          | 1                   |                   |               | GRO       | UND       | NATER             | DETAIL                |
|                    |                    |         |         | TAIL                |                                               |                 |             | Date                           | Hole<br>Dept                       |                     | Depth to<br>Water | Com           | ments     |           |                   |                       |
| -                  | late               |         | p De    |                     | 1.00 RZ Base<br>1.00 12.00                    |                 | Typ<br>50mm |                                | 9 12.00                            |                     | 3.10              | Water         | lowel roc | unded a   | t 5 mina i        | her end of            |

|                    | 8 <u>1</u><br>193   |                    |         |         | GEOT                                          | ECI             | HNIC        | AL CO                          | RE LOO                  | G RECO              | RD                    |                   |                         | R         | 2000.C    | 2181                           | 87580<br>                               |
|--------------------|---------------------|--------------------|---------|---------|-----------------------------------------------|-----------------|-------------|--------------------------------|-------------------------|---------------------|-----------------------|-------------------|-------------------------|-----------|-----------|--------------------------------|-----------------------------------------|
| :0                 | NTR                 | ACT                | 1       | inton   | Road, Tallaght                                |                 |             |                                |                         |                     |                       | 100.10            | LHOLE                   | NO        | RC        | 100 C 100                      | 2                                       |
|                    |                     |                    |         | (mOl    |                                               |                 |             | RIG TYPE                       |                         |                     | Geo 305               |                   | et<br>E drill<br>I logg |           | 05/0      | net 1 of<br>06/2019<br>06/2019 | ,                                       |
| :u                 | ENT                 |                    | A       | inton   | Road Properties I<br>Mahony CE                | .ld             | J           | FLUSH<br>INCLINATI<br>CORE DIA | ION (deg)<br>METER (m   | m)                  | Air/Mist<br>-90<br>78 | 10.000            | LED BY<br>GED BY        |           |           | GSL<br>).O'She                 | a                                       |
| Downhole Depth (m) | Core Run Depth (m)  | T.C.R.%            | S.C.R.% | R.O.D.% | Fracture<br>Spacing<br>Log<br>(mm)<br>250 500 | Non-intact Zone | Legend      |                                |                         | Descript            | ion                   |                   |                         | Depth (m) | Elevation | Standpipe Defaits              | SPT (N Value)                           |
| 1                  | 1.50                | 0                  | 0       | o       |                                               |                 |             | SYMMET<br>as CLAY              | RIX DAILL               | ING: No rec         | owery, obsi           | srved by d        | niler                   | 1.50      |           |                                |                                         |
| 2                  |                     | 0                  | 0       | 0       |                                               |                 | 00000000    | SYMMET<br>as clayey            | RIX DRILL<br>saridy GR/ | ING: No rec<br>AVEL | overy, obsi           | arved by d        | ritter                  | 1.00      |           |                                | N = 13<br>(2, 2, 3, 3, 4)<br>4)         |
| 6                  | <u>3.00</u><br>4.50 | O                  | ٥       | 0       |                                               |                 | 00000       | as clayøy                      | RIX DAILL<br>COBBLES    | ING: No rec         | overy, obsi           | erved by d        | nller                   | 3,00      |           |                                | N = 25<br>(3, 3, 9, 5<br>4)             |
| 1220               | 6.00                | ٥                  | 0       | 0       |                                               |                 | P Jol d P   |                                |                         |                     |                       |                   |                         | 6.00      |           |                                | N = 52<br>(14, 7, 24,<br>12, 6)         |
|                    |                     | 0.                 | 0       | 0       |                                               |                 | 1000000     | SYMMET<br>as clayey            | AIX DRILL<br>GRAVEL     | ING: No rec         | overy, obsi           | erved by d        | riller                  |           |           |                                | N=23<br>(4.4,4.5<br>T)                  |
| 3                  | 9.00                | 0                  | 0       | o       |                                               |                 | 1900690     |                                |                         |                     |                       |                   |                         |           |           |                                | No 37<br>(6.7.7.9,<br>11)               |
| 1                  | MAR                 | 0                  | 0       | 0       |                                               |                 | 06.9.9      |                                |                         |                     |                       |                   |                         | WAT       |           |                                | N = 36<br>(7, 7, 7, 8<br>12)<br>DETAILS |
| No.                | <b>Shipping</b>     | address the second | 00-     | 12.00   | im.                                           |                 |             |                                | Water                   | Casing              | Sealed<br>At          | Fise              | Time<br>(min)           | 1 2 2     | mmer      | 7.7                            | 1111123                                 |
|                    |                     |                    |         |         |                                               |                 |             |                                | Strike<br>5.40          | Depth<br>5.40       | No                    | To                | (min)                   |           | Slow      |                                |                                         |
|                    |                     |                    |         |         |                                               |                 |             |                                | -                       |                     |                       |                   |                         | GRO       | DUND      | WATER                          | DETAIL                                  |
| ¥S'                | TAL                 | LATIC              | ON D    | ETAI    | LS                                            |                 |             |                                | Date                    | Hole<br>Depth       | Casing<br>Depth       | Depth to<br>Water | Com                     | ments     | 5         |                                |                                         |
|                    | Date<br>-06-1       |                    | 12.0    |         | RZ Top RZ Base<br>1.00 12.00                  |                 | Typ<br>50mm | NB<br>NSP                      |                         |                     |                       |                   |                         |           |           |                                |                                         |

| No.                | <u>ह है</u><br>जन्न  | 1                  |         |         | GEOT                                          | ECI             | HNIC        | CAL CO    | RELOO                   | RECO                      | RD                       |                           |                  | H                  |              | 1 NUM              |                              |
|--------------------|----------------------|--------------------|---------|---------|-----------------------------------------------|-----------------|-------------|-----------|-------------------------|---------------------------|--------------------------|---------------------------|------------------|--------------------|--------------|--------------------|------------------------------|
| co                 | NTR                  | ACT                | A       | irton   | Road, Tallaght                                | -               |             |           | 1                       |                           |                          | DRIL                      | LHOLE            | NO                 | RC           |                    | ~~                           |
| co                 | ORC                  | INAT               | TES     |         |                                               |                 |             | RIG TYPE  |                         |                           | Geo 305                  |                           | DRILL            |                    | 05/0         | et 2 of<br>96/2019 | )                            |
|                    |                      | DLE                | VEL     |         |                                               |                 | _           | FLUSH     |                         |                           | Air/Mist                 | -                         | LOGG             | 21.5               | - 9000       | 36/2019            | •                            |
|                    | ENT                  | ER                 |         |         | Road Properties<br>Mahony CE                  | Ltd.            |             | CORE DIA  |                         | m)                        | -90<br>78                | - N. C. C.                | LED BY<br>GED BY |                    |              | 3SL<br>I.O'She     | a                            |
| Downhole Depth (m) | Core Run Depth (m)   | T.C.R.W            | S.C.R.% | R.Q.D.% | Fracture<br>Specing<br>Log<br>(mm)<br>250 500 | Non-intact Zone | Legend      |           |                         | Descrip                   |                          |                           |                  | Depth (m)          | Elevation    | Standpipe Details  | SPT (N Value)                |
| 10                 | 10.50                | 0                  | 0       | 0       |                                               |                 | 8000000     | as clayey |                         | ING: No rec<br>continued) | overy, obs               | arved by d                | riter            |                    |              |                    | N = 34<br>(6.7, 8, 8,<br>9)  |
| 12                 | 12.00                |                    |         |         |                                               |                 | PQ          | End       | of Borehole             | at 12.00 n                | 1                        |                           | 11               | 12.00              |              | ůmí<br>I           | N = 30<br>(5, 5, 7, 8,<br>9) |
| 14                 |                      |                    |         |         |                                               |                 |             |           |                         |                           |                          |                           |                  |                    |              |                    |                              |
| 15<br>16           |                      |                    |         |         |                                               |                 |             |           |                         |                           |                          |                           |                  |                    |              |                    |                              |
| 17                 |                      |                    |         |         |                                               |                 |             |           |                         |                           |                          |                           |                  |                    |              |                    |                              |
| 18                 |                      |                    |         |         |                                               |                 |             |           |                         |                           |                          |                           |                  |                    |              |                    |                              |
| 18                 |                      |                    |         |         |                                               |                 |             |           |                         |                           |                          |                           |                  |                    |              |                    |                              |
| REA                | AAR                  | cs                 |         |         |                                               |                 |             |           |                         |                           |                          |                           |                  | WAT                | ERS          | TRIKE              | DETAILS                      |
|                    | and includes         | and in case of the | .00-1   | 2.00    | m. ı                                          |                 |             |           | Water<br>Strike<br>5.40 | Casing<br>Depth<br>5.40   | Sealed<br>At<br>No       | Rise<br>To                | Time<br>(min)    |                    | mmer<br>Slow | nts                |                              |
| 2                  |                      |                    |         |         |                                               |                 |             |           |                         | 1                         | 10                       |                           |                  | GRO                | DUND         | WATER              | DETAIL                       |
| 1                  | TALL<br>Date<br>06-1 | 11                 | Ip De   | oth     | LS<br>RZ Top  RZ Base<br>1.00   12.00         | -               | Tv:<br>50mm | e<br>CD   | Date<br>96-09-19        | Hole<br>Depth<br>12:00    | Casing<br>Depth<br>12.00 | Depth to<br>Water<br>3.65 | Com              | iments<br>level re | -            | at 5 mirs.         | atter end of                 |

#### RC01 Box 1 of 1 - 7.50-13.50m



#### RC05 Box 1 of 1 - 12.00-13.70m



.

| the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ga                    | s & Groundwa                          | ter Monitoring    |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|-------------------|---------------------|
| Site Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Airton Road, Tallaght |                                       |                   |                     |
| Project No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21813                 |                                       |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barrett Mahoney Cha   | rtered Engineers                      |                   | -UIGSL              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21-Jun-19             | · · · · · · · · · · · · · · · · · · · |                   |                     |
| Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E. Keamey             |                                       |                   |                     |
| Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dip meter and gas mo  | onitor                                |                   |                     |
| and the second s | Peak / Steady State   |                                       |                   |                     |
| Location ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                       | BH01              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                     |                                       | 1                 |                     |
| Water Level (mbgl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.05m                 |                                       | di                | 102                 |
| Gas Flow (I/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |                   |                     |
| CH4 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                   |                                       |                   |                     |
| CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.4                   |                                       |                   |                     |
| 02 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2                  |                                       |                   |                     |
| CO (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                   |                                       |                   |                     |
| H2S (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                   |                                       |                   |                     |
| Balance (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.4                  |                                       |                   |                     |
| Barometric Pressure (mbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1016                  | -                                     |                   |                     |
| Weather/Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry                   |                                       |                   |                     |
| Location ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Liy                   |                                       | BH05              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |                   |                     |
| Time (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                       |                   |                     |
| Water Level (mbgl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.40m                 |                                       | 1                 |                     |
| Gas Flow (l/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |                   |                     |
| CH4 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                   |                                       |                   |                     |
| CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                   |                                       |                   |                     |
| 02 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.8                  |                                       | the second second |                     |
| CO (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                   |                                       |                   |                     |
| H2S (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                   |                                       |                   |                     |
| Balance (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.0                  |                                       |                   |                     |
| Barometric Pressure (mbar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1016                  |                                       |                   | _                   |
| Weather/Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry                   |                                       |                   |                     |
| Location ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                       | BH07              |                     |
| Time (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | atter of an and a state               |                   |                     |
| Water Level (mbgl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.25                  |                                       |                   |                     |
| Gas Flow (I/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |                   |                     |
| CH4 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0                   | 1                                     |                   |                     |
| CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                   |                                       |                   |                     |
| 02 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.8                  |                                       |                   |                     |
| CO (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                   |                                       |                   |                     |
| H2S (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                   |                                       |                   |                     |
| Balance (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.0                  |                                       |                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1013                  | an man a                              | 570               | 0.54.941.941.041.04 |
| Weather/Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry                   |                                       |                   |                     |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                       |                   |                     |

| Nirton Road, Tallaght<br>19813<br>Barrett Mahoney Chart<br>M-Jul-19<br>E Kearney<br>Xip meter and gas mon | ered Engineers                                                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Barrett Mahoney Chart<br>M-Jul-19<br>5. Kearney                                                           | ered Engineers                                                                                                                                                                                                 |                                                                                                                                                                                                          |                                                                                           | IGSL                                                                                                                                                                                                                                                          |
| Barrett Mahoney Chart<br>M-Jul-19<br>5. Kearney                                                           | lered Engineers                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           | TIGSL/                                                                                                                                                                                                                                                        |
| Kearney                                                                                                   |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           | - X 10 /                                                                                                                                                                                                                                                      |
| . Kearney<br>)p meter and oss mon                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           | $1 \sim$                                                                                                                                                                                                                                                      |
| to meter and oss mon                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           | A CONTRACTOR OF A CONTRACT                                                                                                                                                                                                                                    |
|                                                                                                           | nitor                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| eak / Steady State R                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
|                                                                                                           |                                                                                                                                                                                                                | BH01                                                                                                                                                                                                     | in second                                                                                 |                                                                                                                                                                                                                                                               |
|                                                                                                           | Sec. Sec.                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| .5m                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 01507                                                                                                     |                                                                                                                                                                                                                |                                                                                                                                                                                                          | 1                                                                                         |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          | -                                                                                         |                                                                                                                                                                                                                                                               |
| 0.6                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 18.0                                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                | and the second second                                                                                                                                                                                    |                                                                                           |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 81.4                                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 013                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| Dry                                                                                                       |                                                                                                                                                                                                                | Sector States                                                                                                                                                                                            |                                                                                           |                                                                                                                                                                                                                                                               |
|                                                                                                           |                                                                                                                                                                                                                | BH05                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                               |
|                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| .8                                                                                                        |                                                                                                                                                                                                                |                                                                                                                                                                                                          | 2-5 - C                                                                                   |                                                                                                                                                                                                                                                               |
|                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                          | í                                                                                         |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          | í l                                                                                       |                                                                                                                                                                                                                                                               |
| 0.1                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 18.8                                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 81.1                                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 013                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| iγ                                                                                                        |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 50 II.                                                                                                    |                                                                                                                                                                                                                | BH07                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                               |
|                                                                                                           | 1.1                                                                                                                                                                                                            |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 3                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
|                                                                                                           |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          | 1                                                                                         |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 20.1                                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 0.0                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 79.9                                                                                                      |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| 013                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
| ny                                                                                                        |                                                                                                                                                                                                                |                                                                                                                                                                                                          |                                                                                           |                                                                                                                                                                                                                                                               |
|                                                                                                           | 0.0<br>0.6<br>18.0<br>0.0<br>81.4<br>013<br>Ty<br>8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.0<br>81.1<br>013<br>Ty<br>3<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.6<br>18.0<br>0.0<br>0.0<br>81.4<br>013<br>Ty<br>8<br>8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0 0.6 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 81.4 003 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.0<br>0.6<br>18.0<br>0.0<br>0.0<br>0.0<br>0.0<br>81.4<br>013<br>Ty<br>BH05<br>8<br>0.0<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.1<br>18.8<br>0.0<br>0.0<br>0.1<br>18.8<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |

**III Trial Pit Records** 

| 01               | 551                     |                                                                                                                                       | TRIAL PIT   | RECO      | RD           |           |              |               |        | REPORT N | 813              | 2                 |
|------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--------------|-----------|--------------|---------------|--------|----------|------------------|-------------------|
| CON              | TRACT                   | Airton Road, Tailaght                                                                                                                 |             |           |              |           | 1            | TRIAL PI      | T NO.  | TPO      |                  |                   |
| LOG              | GED BY                  | E. Kearney                                                                                                                            | CO-ORDINA   | TES       |              |           |              | DATE ST       |        | 27/0     | 5/2019<br>5/2019 |                   |
| CLIE             | INEER                   | Airton Road Properties Ltd.<br>Barrett Mahory CE                                                                                      | GROUND LE   | ivel. (m) |              |           |              | EXCAVA        | TION   | JCB      |                  | _                 |
|                  |                         |                                                                                                                                       |             |           |              |           |              | 1             | Sample | 6        | (8               | neter             |
|                  |                         | Geolechnical Description                                                                                                              |             | Legend    | Depth<br>(m) | Elevation | Water Strike | Sample<br>Ref | Type   | Cepth    | Vane Test (KPa)  | Hand Penetrometer |
| 6.0              |                         | ETE with a plastic membrane und                                                                                                       | HUDARDA     | 12.22     | 0.20         |           |              |               |        |          |                  |                   |
|                  | Gravel                  | k brown sandy gravelly CLAY. San<br>s fine to coarse and subangular to<br>redium subangular to subrounded                             | subrounded. | 9 9 9     |              |           |              | AA118502      | B      | 0.50     |                  |                   |
| 1.0              |                         |                                                                                                                                       |             |           | h            |           |              | AA118503      | B      | 1.00     |                  |                   |
| 2.0              |                         | 412.4                                                                                                                                 |             |           | 2.10         |           |              | AA118504      | в      | 2.00     |                  |                   |
|                  | Gravel is<br>Has a lo   | f black sandy gravety CLAY. Sand<br>s fine to coarse and subangular to<br>w subangular to subrounded cobb<br>which are >600mm in size | subrounded  | 14114     | 1            |           | 1            |               |        |          |                  |                   |
| 30               | OBSTRU<br>End of T      | JCTION<br>rial Pit at 2.90m                                                                                                           |             |           | 2.90         |           | ₹<br>(ieraa) | AA1 18505     | B      | 2.90     |                  |                   |
| 40               |                         |                                                                                                                                       |             |           |              |           |              |               |        |          |                  |                   |
| ieep             | age at 2.8              | anditions<br>Om                                                                                                                       |             |           |              |           |              |               |        |          |                  |                   |
| itabil<br>itabic |                         |                                                                                                                                       |             |           |              |           |              |               |        |          |                  |                   |
| Jenor<br>LAT s   | ral Remark<br>scanned k | ks<br>scation                                                                                                                         |             |           |              |           |              |               |        |          |                  |                   |

| 3              | 100                              |                                                                                                                                               | TRIAL PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RECO          | RD           |           |               |                     |         | REPORT N | 813                           | 1                 |
|----------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-----------|---------------|---------------------|---------|----------|-------------------------------|-------------------|
| CON            | TRACT                            | Airton Roed, Tallaght                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |           |               | TRIAL PI            | TNO.    | TPO      | ST                            |                   |
| LOG            | GED BY                           | E. Kearney                                                                                                                                    | CO-ORDINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |              |           |               | DATE ST.<br>DATE CO |         | 27/0     | st 1 of 1<br>5/2019<br>5/2019 | -                 |
| CLIE           | ineer                            | Airton Road Properties Ltd.<br>Barrett Mahony CE                                                                                              | GROUND LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EVEL (m)      |              |           | _             | EXCAVA<br>METHOD    | TION    | JCB      |                               |                   |
|                |                                  |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |           |               | s                   | Samplei |          | (e                            | meter             |
|                |                                  | Geotechnical Description                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Legend        | Depth<br>(m) | Elevation | Water Strike  | Sample<br>Raf       | aqvit   | Depth    | Vane Test (KPa)               | Hand Penetrometer |
| 0,0            |                                  | ETE with a plastic membrane unc                                                                                                               | the state of the s | 333           | 0.20         |           |               |                     |         |          |                               |                   |
|                | Gravel i<br>Has a m              | k brown sandy gravelly CLAY. Sat<br>s fine to coarse and subergular to<br>ledium subergular to subrounded<br>content which are >600mm in size | subrounded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |              |           |               | AA113509            | B       | 0.50     |                               |                   |
| 1.0            |                                  |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9   9   9   9 |              |           |               | AA113510            | B       | 1.00     |                               |                   |
| 20             |                                  |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 6 6 6       |              |           |               | AA113511            | в       | 2.00     |                               |                   |
| 30             | Gravel is<br>Has a to<br>content | f black sandy gravelly CLAY. Same<br>fine to coarse and subangular to<br>w subangular to subrounded cobt<br>which are >600mm in size.         | subrounded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 2.80<br>3.00 |           | 1<br>Gentrepu | AA113512            | в       | 3.00     |                               |                   |
| 4.0            | OBSTRI<br>End of T               | JOTION<br>rial Pil at 3.00m                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |           |               |                     |         |          |                               |                   |
| Grou           | ndwater C                        | Conditions                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |           |               |                     |         |          |                               |                   |
| Seep           | age al 2.9                       | 10m,                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |           |               |                     |         |          |                               |                   |
| Stabi<br>Stabi | le                               |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |           |               |                     |         |          |                               |                   |
| Gene<br>CAT    | eral Remai<br>scanned I          | ks<br>ocation.                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |           |               |                     |         |          |                               |                   |

| 3              | 535               |                                                                                                                                                          | TRIAL PIT                                    | RECO                         | RD           |           |              |                              |          | REPORT N | UMBER                         |                   |
|----------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------|--------------|-----------|--------------|------------------------------|----------|----------|-------------------------------|-------------------|
|                | ITRACT            | Airton Road, Tallaght                                                                                                                                    |                                              |                              |              |           |              | TRIAL P                      | TNO.     | TPO      |                               | -                 |
| LOG            | IGED BY           | E. Kearney<br>Airton Road Properties Ltd.                                                                                                                | CO-ORDINAT                                   |                              |              |           |              | DATE ST<br>DATE CO<br>EXCAVA | MPLE     | 24/05    | et 1 of 1<br>5/2019<br>5/2019 |                   |
| ENG            | INEER             | Barrett Mahony CE                                                                                                                                        |                                              | 1                            |              |           | -            | METHOD                       | <u> </u> |          | _                             | 1.                |
|                |                   | Geotechnical Description                                                                                                                                 |                                              |                              |              | ug        | Water Strike |                              | Sample   |          | Vane Test (KPa)               | Hand Penetrometer |
|                |                   |                                                                                                                                                          |                                              | Legend                       | (m)          | Elevation | Water        | Sample                       | Type     | Depth    | Vane 1                        | Hand              |
| 0.0            | CONCR             | ETE (Large bricks)<br>IL                                                                                                                                 |                                              | 25 35                        | 0.05         | 1         |              |                              |          |          |                               |                   |
| 100            | Stiff brow        | k grey brown gravelly CLAY. Grav<br>and subangular to subrounded. Ha<br>ded cobble content. (Possible ma<br>wn sandy gravelly CLAY. Sand is              | is a medium<br>de ground)/<br>medium. Gravel | 9 9 9                        | 0.30<br>0.50 |           |              | AA99943                      | в        | 0.50     |                               |                   |
| 1.0            | subrand<br>>600mm | coarse and angular. Has a low si<br>ed cobble and boulder content wh<br>t in size. (Possible made ground).                                               | ich are                                      | 1 1 4 1 4 1 4<br>6 1 1 4 1 4 |              |           |              | AA99944                      | B        | 1.00     |                               |                   |
| 2.0            |                   |                                                                                                                                                          |                                              |                              |              |           |              | AA99945                      | ß        | 2.00     |                               |                   |
|                | Has a lo          | black sandy gravelty CLAY. Sanc<br>fine to coarse and subangular to<br>w subangular to subrounded cobb<br>which are >600mm in size.<br>rial Pil at 2.40m | subrounded                                   | ज<br>                        | 2.20<br>2.40 |           |              | AA99946                      | в        | 2.40     |                               |                   |
| 3.0            |                   |                                                                                                                                                          |                                              |                              |              |           |              |                              |          |          |                               |                   |
| 10             |                   |                                                                                                                                                          |                                              |                              |              |           |              |                              |          |          |                               |                   |
|                |                   |                                                                                                                                                          |                                              |                              |              |           |              |                              |          |          |                               |                   |
| rou            | ndwater C         | enditions                                                                                                                                                |                                              |                              |              |           |              |                              |          |          |                               |                   |
| itabi<br>Itabi | lity<br>B         |                                                                                                                                                          |                                              |                              |              |           |              |                              | -        |          |                               |                   |
| AT s           | ral Remari        | ks<br>scation,                                                                                                                                           |                                              |                              |              |           | -            |                              |          |          |                               |                   |

| 2                        | -                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>FRIAL PIT</b>           | RECO          | RD           |           |                |                                        |             | REPORT N | UMBEF                         | 1                 |
|--------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|--------------|-----------|----------------|----------------------------------------|-------------|----------|-------------------------------|-------------------|
| Mr.                      | SJL.                               | Airton Road, Tallaght                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |               |              |           |                | TRIAL PI                               | TNO.        | TPO      | 14                            |                   |
| CLIE                     |                                    | E. Kearney<br>Airton Road Properties Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO-ORDINAT                 |               |              |           |                | DATE ST<br>DATE CO<br>EXCAVA<br>METHOD | TION        | 24/0     | et 1 of 1<br>5/2019<br>5/2019 | 8                 |
| ENG                      | INEER                              | Barrett Mahony CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |               |              |           | 1              | 1                                      | ,<br>Sample | 5        |                               | lit.              |
|                          |                                    | Geotechnical Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Legend        | Depth<br>(m) | Elevation | Writter Strike | Sample<br>Ref                          | Type        | Depth    | Vane Test (KPa)               | Hand Penetrometer |
| 0.0                      | is fine to<br>made gr              | wn sandy gravelly CLAY. Sand is n<br>coarse and subengular to subroun<br>ound).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ded. (Possibly             |               | 0.30         |           |                | AA99938                                | в           | 0.50     |                               |                   |
| 10                       | Has a lo                           | r brown sendy gravelly CLAY. Sand<br>line to coarse and subangular to s<br>w subangular to subrounded cobble<br>which are >400mm in size. (Possib)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and headdar                | 9 9 9 9 9 9 9 | 0.80         |           | €<br>Geesage   | AA99930                                | В           | 1.00     |                               |                   |
| 20                       | Stiff blac                         | k sandy gravely CLAY. Sand is me<br>coarse and subangular to subrours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dium. Gravel<br>ded. Has a | P   9   9     | 2.50         |           |                | AA99540<br>AA99542                     | B           | 2.00     |                               |                   |
| 30                       | OBSTRU                             | n ennoy griovity CAL, Seinite me<br>coarse and Subangular to subrounded cobbe and b<br>which are 2700mm in size.<br>ICTION<br>inial Pit at 2.90m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oulder                     |               | 2.90         |           |                | AA99941                                | в           | 2.90     |                               |                   |
| AD                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |              |           |                |                                        |             |          |                               |                   |
| Groui<br>Seepi<br>Stabil | ndwater Ci<br>age at 1.81<br>litty | onditions<br>Im.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |               |              |           |                |                                        |             |          |                               |                   |
| Gene                     | e<br>ral Remark<br>scanned lo      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |               |              |           | _              |                                        |             |          |                               |                   |
| 213                      |                                    | and a start of the |                            |               |              |           |                |                                        |             |          |                               |                   |


| d'            | 101                 |                                                                                                          | TRIAL PIT   | RECO    | RD   |           |              |                     |         | REPORT N          | JMBER<br>B13                      | 2                 |
|---------------|---------------------|----------------------------------------------------------------------------------------------------------|-------------|---------|------|-----------|--------------|---------------------|---------|-------------------|-----------------------------------|-------------------|
|               | TRACT               | Airton Road, Tallaght                                                                                    |             |         |      |           |              | TRIAL PI            | TNO.    | TPO               | 75                                |                   |
| log           | GED BY              | E. Keamey                                                                                                | CO-ORDINAT  |         |      |           |              | DATE ST.<br>DATE CO | MPLET   | 27/08<br>ED 27/08 | <u>t 1 of 1</u><br>92019<br>92019 |                   |
| CLIE          | NT                  | Airlon Road Properties Ltd.<br>Barratt Mahony CE                                                         | GROOND LE   | ver (m) |      |           |              | EXCAVA<br>METHOD    | TION    | JCB               |                                   |                   |
|               |                     |                                                                                                          |             |         |      |           |              | 5                   | Samples | 1                 | (j)                               | meter             |
|               |                     | Geotechnical Description                                                                                 |             | puagend | (m)  | Elevation | Water Strike | Sample<br>Ref       | Type    | Depth             | Vane Test (KPa)                   | Hand Penetrometer |
| 0.0           |                     | ETE with a plastic membrane und                                                                          | 14443M      | 22.23   | 0.20 | 1480      | -            |                     | 152     | 20201             | 60                                |                   |
|               | Gravel i            | k brown sandy gravely CLAY. Sar<br>s line to coarse and subangular to<br>redium subangular to subrounded | subrounded. |         |      |           |              | AA113513            | в       | 0.50              |                                   |                   |
| 1,6           |                     |                                                                                                          |             |         |      |           |              | AA113514            | B       | 1.00              |                                   |                   |
|               |                     |                                                                                                          |             | 9 9 9   |      |           |              |                     |         |                   |                                   |                   |
| 2.0           |                     |                                                                                                          |             | 0       | 2.50 |           |              | AA113515            | в       | 2.00              |                                   |                   |
|               | End of 1            | UCTION<br>Frial Pit at 2.50m                                                                             |             |         |      |           |              |                     |         |                   |                                   |                   |
| 30            |                     |                                                                                                          |             |         |      |           |              |                     |         |                   |                                   |                   |
|               |                     |                                                                                                          |             |         |      |           |              |                     |         |                   |                                   |                   |
| 4.0           |                     |                                                                                                          |             |         |      |           |              |                     |         |                   |                                   |                   |
| irosa         | ndwator (           | Conditions                                                                                               |             |         |      |           |              |                     |         |                   |                                   |                   |
|               |                     |                                                                                                          |             |         |      |           |              |                     |         |                   |                                   |                   |
| tabi<br>itabi | iity<br>P           |                                                                                                          |             |         |      |           |              |                     |         |                   |                                   |                   |
| iono<br>AT :  | ral Roma<br>scanned | riks<br>location.                                                                                        |             |         |      |           |              |                     |         |                   |                                   |                   |
| -3.01/3       |                     |                                                                                                          |             |         |      |           |              |                     |         |                   |                                   |                   |

| 10-1             | س<br>دده                 |                                                                                                                                                                     | TRIAL PIT                                   | RECO    | RD           |           |              |                    |        | REPORT N        | UMBER<br>813                  |                             |
|------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------|--------------|-----------|--------------|--------------------|--------|-----------------|-------------------------------|-----------------------------|
| CON              | TRACT                    | Airton Road, Tallaght                                                                                                                                               |                                             |         |              |           |              | TRIAL PI           | T NO.  | TPO             | CT                            | _                           |
|                  | GED BY                   | E. Kearney                                                                                                                                                          | CO-ORDINAT                                  |         |              |           |              | DATE ST<br>DATE CO | MPLET  | 27/0<br>ED 27/0 | et 1 of 1<br>5/2019<br>5/2019 |                             |
| CLIE             | INEER                    | Airton Road Properties Ltd.<br>Barrett Mahony CE                                                                                                                    | Chicono Le                                  | vec (m) |              |           |              | EXCAVA<br>METHOD   | TION   | JCB             |                               |                             |
|                  |                          |                                                                                                                                                                     |                                             |         |              |           |              | 5                  | Sample |                 | 6                             | relet                       |
|                  |                          | Geotechnical Description                                                                                                                                            |                                             | Legend  | Depth<br>(m) | Elevation | Water Strike | Sample<br>Ref      | Type   | Depth           | Vane Test (KPa)               | Hand Penetrometes<br>MCPair |
| 5.0              |                          | ETE with a plastic membrane unde                                                                                                                                    | Constraint and a second second              | 12.45   | 0.20         |           |              |                    |        | -               |                               |                             |
|                  | Gravel is                | c brown sandy graveily CLAY. San<br>I fine to coarse and subangular to<br>edium subangular to subrounded o                                                          | subrounded.                                 |         |              |           |              | AA113516           | 8      | 0.50            |                               |                             |
| 1.0              |                          |                                                                                                                                                                     |                                             |         |              |           |              | AA113517           | В      | 1,00            |                               |                             |
| 2.9              |                          |                                                                                                                                                                     |                                             | 9 9 9 9 |              |           |              | AA113518           | в      | 2.00            |                               |                             |
| 20               | OBSTRL                   | black sandy gravelly CLAY. Sand<br>fine to coarse and subangular to<br>v subangular to subrounded cobbi<br>vision are >600mm in size.<br>ICTION<br>ral Pit at 3.10m | is medium.<br>subrounded.<br>e and bouilder |         | 2.90<br>3.10 |           |              | AA113519           | в      | 3,00            |                               |                             |
| 4.0              |                          |                                                                                                                                                                     |                                             |         |              |           |              |                    |        |                 |                               |                             |
| Dry              | ndwator C                | onditions                                                                                                                                                           |                                             |         |              |           |              |                    |        |                 |                               |                             |
| Stabil<br>Stable | lity<br>1                |                                                                                                                                                                     |                                             |         |              |           |              |                    |        |                 |                               |                             |
| Sener<br>CAT s   | ral Remark<br>scanned to | ks<br>Ication                                                                                                                                                       |                                             |         |              |           | 111          |                    |        | (- <u>()</u>    |                               | _                           |

| س کی<br>1881         |                                    | TRIAL PIT RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                           |              |           |              |                   |       |       | REPORT NUMBER   |                   |  |  |
|----------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|--------------|-----------|--------------|-------------------|-------|-------|-----------------|-------------------|--|--|
| CON                  | TRACT                              | Ainton Road, Tallaght                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.152                    |                           |              |           |              | TRIAL PIT NO. TPO |       |       | 55              |                   |  |  |
| LOGGED BY E. Kearney |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |              |           |              |                   | ARTED |       |                 |                   |  |  |
| CLIE                 | NT<br>NEER                         | Airton Road Properties Ltd.<br>Barrett Mahony CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GROUND LE                | VEL (m)                   |              |           |              | EXCAVA<br>METHOD  | TION  | JCB   |                 |                   |  |  |
|                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |              | 1         |              | Samples           |       | 6     | î               |                   |  |  |
|                      |                                    | Geotechnical Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Géotechnical Description |                           | Depth<br>(m) | Elevation | Water Strike | Sample<br>Ref     | Type  | Depth | Vane Test (KPa) | Hand Penetrometer |  |  |
| 0.0                  | TOPSO                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | 11 11<br>2 11 1<br>2 11 1 | 0.30         |           |              |                   |       |       |                 |                   |  |  |
| 10                   | gravelly<br>coarse a               | MADE GROUND comprised of Firm brown slightly sandy<br>gravelty CLAY. Send is fine to medium. Gravel is fine to<br>coarse and subangular to subrounded. Has a low<br>subangular to subrounded cobble content. Contains<br>infrequent red brick fragments.<br>Firm brown slightly sandy gravely CLAY. Sand is fine to<br>medium. Gravel is fine to coarse and subangular to<br>subrounded. Has a low subangular to subrounded cobble<br>content. (Possibily made ground).<br>Stift dark brown sandy gravely CLAY. Sand is medium.<br>Gravel Is fine to coarse and subangular. Has a low<br>subangular to subrounded cobble and boulder content.<br>which are >600mm in size. (Possibly made ground). |                          |                           | 0.60         |           |              | AA99935           | в     | 0.50  |                 |                   |  |  |
|                      | Firm bro<br>medium<br>subroun      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           | 0.90         |           |              | AA99936           | в     | 1.00  |                 |                   |  |  |
|                      | Stiff dari<br>Gravel In<br>subanou |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |
| 2.0                  | OBSTR                              | 107104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 5                         | 2.30         |           |              | AA99937           | в     | 2.00  |                 |                   |  |  |
|                      |                                    | rial Pit at 2.30m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |
| 10                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |
|                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |
| 10                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |
|                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |
| irou<br>iry          | ndwater C                          | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                           |              |           |              |                   | ,     |       |                 |                   |  |  |
| itabi<br>itabi       | lity<br>p                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | _                         |              |           |              |                   |       |       |                 |                   |  |  |
| ienei<br>AT 4        | ral Remar                          | ks<br>nesting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |
| ali                  | seamed i                           | ovation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                           |              |           |              |                   |       |       |                 |                   |  |  |

| TRIAL PIT RECORD                        |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         | REPORT NUMBER |                 |                            |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|-----------|-----------------------------------------------------|--------------------|---------|---------------|-----------------|----------------------------|--|--|
| 1937                                    |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         |               | 21813           |                            |  |  |
| CONTRACT Airton Road, Tallagh! TRIAL PI |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    | TNO.    |               |                 |                            |  |  |
| LOG                                     | GED BY                                                                                                                                      | E. Keamey                                                                                                                                                                                                                                                                                                  | res                                                                                                                                                          |         |              |           | ATE STARTED 24/05/2019<br>DATE COMPLETED 24/05/2019 |                    |         |               |                 |                            |  |  |
| CLIE                                    | NT                                                                                                                                          | Airton Road Properties Ltd.                                                                                                                                                                                                                                                                                | GROUND LE                                                                                                                                                    | VEL (m) |              |           |                                                     | EXCAVA             | TION    | ED 24/0       | 5/2019          |                            |  |  |
| ENG                                     | NEER                                                                                                                                        | Barrett Mahony CE                                                                                                                                                                                                                                                                                          |                                                                                                                                                              | -       |              |           | r                                                   | METHOD             | 07.<br> |               | -               | -                          |  |  |
|                                         | Geotechnical Description                                                                                                                    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | Legend  | Depth<br>(m) | Elavation | Water Shike                                         | Samples            |         |               | (ed             | meter                      |  |  |
|                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     | Sample<br>Ref      | Type    | Depth         | Vane Test (KPa) | Hand Penetrometer<br>(KPa) |  |  |
| 0.0                                     | MADE                                                                                                                                        | TARMACADAM<br>MADE GROUND comprised of: Dense grey coarse                                                                                                                                                                                                                                                  |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
|                                         | MADE (                                                                                                                                      | anguint GRAVEL (HRODCKE).<br>MADE GROUND comprised of Firm to still brown slightly<br>sandy gravely CLAY. Sand is medium. Gravel is fine to<br>coarse and subangular. Has a low subangular to<br>subrounded cobble and boulder content which are<br>>500mm in size. Contains infrequent rebar, plastic and |                                                                                                                                                              |         | 0.40<br>0.90 |           |                                                     | AA99931<br>AA99932 | B       | 0.50          |                 |                            |  |  |
|                                         | subrour<br>>500mr                                                                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
| 10                                      | red brick fragments.<br>Firm to stiff brown slightly sandy gravelly CLAY. Sand is<br>medium. Gravel is fine to coarse and subangular. Has a |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | - Q.    |              |           |                                                     |                    |         |               |                 |                            |  |  |
|                                         | 10W SUD                                                                                                                                     | content which are >500mm in size. (Possibly made                                                                                                                                                                                                                                                           |                                                                                                                                                              |         |              |           |                                                     |                    |         |               | ł.              |                            |  |  |
|                                         | Brodino)                                                                                                                                    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | a       |              |           |                                                     |                    |         |               |                 |                            |  |  |
| 2.0                                     |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              | a       |              |           | ¥                                                   | AA99933            |         | 2.00          |                 |                            |  |  |
|                                         | CONTLA                                                                                                                                      | Aug. 1                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |         | 2.30         | 0         | Series                                              | 4499933            | в       | 2.00          |                 |                            |  |  |
|                                         | is fine to<br>low sub-                                                                                                                      | coarse and subangular to subrou                                                                                                                                                                                                                                                                            | sandy gravely CLAY. Sand is medium, Gravel<br>parse and subangular to subrounded. Has a<br>gular to subrounded cobble and boulder<br>ich are >700mm in size. |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
| 3.0                                     | OBSTR<br>End of 1                                                                                                                           | UCTION<br>frial Fit at 2.80m                                                                                                                                                                                                                                                                               | TION<br>al Fit at 2.80m                                                                                                                                      |         |              |           |                                                     | AA99934            | в       | 2.80          | 4               |                            |  |  |
|                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
| 40                                      |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
|                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
|                                         | ndwater (<br>age al 2.1                                                                                                                     | Conditions<br>10m.                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
| itabil<br>Stabil                        |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
|                                         | ral Rema<br>scanned I                                                                                                                       |                                                                                                                                                                                                                                                                                                            | n 1                                                                                                                                                          |         |              |           |                                                     |                    |         |               |                 |                            |  |  |
|                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |         |              |           |                                                     |                    |         |               |                 |                            |  |  |

| TRIAL PIT                       |                                 |                                                                                                                                                                                                       |        |              | RD        |              |               | REPORT NUMBER      |                             |                 |                   |        |  |
|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|-----------|--------------|---------------|--------------------|-----------------------------|-----------------|-------------------|--------|--|
|                                 |                                 |                                                                                                                                                                                                       |        |              |           |              |               | 100.000            | 1964 R. 2010 C. Grandel 100 |                 |                   | 209    |  |
| LOGGED BY E. Kearney GROUND LEV |                                 |                                                                                                                                                                                                       |        |              |           |              |               | DATE ST<br>DATE CO | MPLET                       | TED 24/05/2019  |                   |        |  |
| ENG                             | NT<br>NEER                      | Airton Road Properties Ltd.<br>Barrett Mahony CE                                                                                                                                                      |        |              |           |              |               | EXCAVA             |                             | JC8             |                   | 0      |  |
|                                 |                                 |                                                                                                                                                                                                       |        |              |           |              |               | Samples            |                             | 6               | 8                 | teller |  |
|                                 |                                 | Geotechnical Description                                                                                                                                                                              | Legend | Depth<br>(m) | Elevation | Water Strike | Sample<br>Ref | Type               | Depth                       | Vane Test (KPa) | Hand Penetrometer |        |  |
| 6.0                             |                                 | CADAM                                                                                                                                                                                                 |        |              | 0,10      |              | 1             | 11-12-0            | 146-3                       |                 | 12                | 1      |  |
|                                 | Firm to s<br>medium<br>low subs | SROUND comprised of: Dense gri<br>GRAVEL (HARDCORE).<br>stiff brown slighty sandy gravelly<br>Gravel is fine to coarse and sublianguitar to subrounded cobble and<br>which are >500mm in size. (Posal |        | 0.30         |           |              | AA99927       | в                  | 0.50                        |                 |                   |        |  |
| 10                              | ground)                         | 10).                                                                                                                                                                                                  |        |              |           |              |               | AA99628            | в                           | 1.00            |                   |        |  |
| 20                              |                                 |                                                                                                                                                                                                       |        |              |           | .¥.          | AA99929       | в                  | 2.00                        |                 |                   |        |  |
| 3.0                             | is fine to<br>low subs          | x sandy gravely CLAY. Sand is medium. Gravel<br>coarse and subangular to subrounded. Has a<br>ngular to subrounded cobble and boulder<br>duch are >700mm in size.                                     |        | 2.80         |           |              | AA99530       | в                  | 3.00                        |                 |                   |        |  |
| 40                              | End of T                        | friał Pit at 3.50m                                                                                                                                                                                    |        |              | 3.50      |              |               |                    |                             |                 |                   |        |  |
| Seep                            | age at 2.1                      | Conditions<br>10m.                                                                                                                                                                                    |        |              |           |              |               |                    |                             |                 |                   |        |  |
| Stabl<br>Stabl                  |                                 |                                                                                                                                                                                                       |        |              |           |              |               |                    |                             |                 |                   |        |  |
|                                 | ral Remar<br>scanned 3          |                                                                                                                                                                                                       |        |              |           |              |               |                    |                             |                 |                   |        |  |



TP02 Photo 1 of 2



TP02 Photo 2 of 2



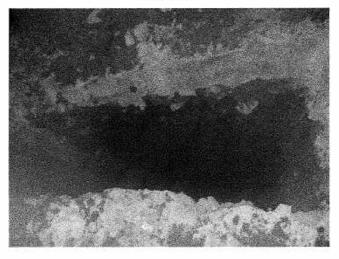
TP03 Photo 1 of 2



Avonmore, Delgany Report No: 21813

TP03 Photo 2 of 2




TP04 Photo 1



TP05 Photo 1



TP06 Photo 1



Avonmore, Delgany Report No: 21813

TP07 Photo 1 of 2



TP07 Photo 2 of 2



TP08 Photo 1 of 2



TP08 Photo 2 of 2



Avonmore, Delgany Report No: 21813



TP09 Photo 2 of 2



TP01 Photo 1



TP02 Photo 1 of 2



Avonmore, Delgany Report No: 21813

TP02 Photo 2 of 2



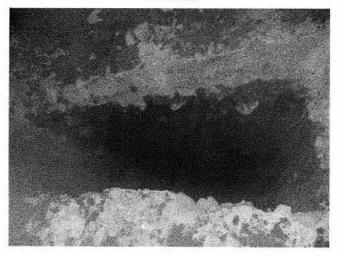
TP03 Photo 1 of 2



TP03 Photo 2 of 2



TP04 Photo 1




Avonmore, Delgany Report No: 21813

TP05 Photo 1



TP06 Photo 1



Avonmore, Delgany Report No: 21813

TP07 Photo 1 of 2



TP07 Photo 2 of 2



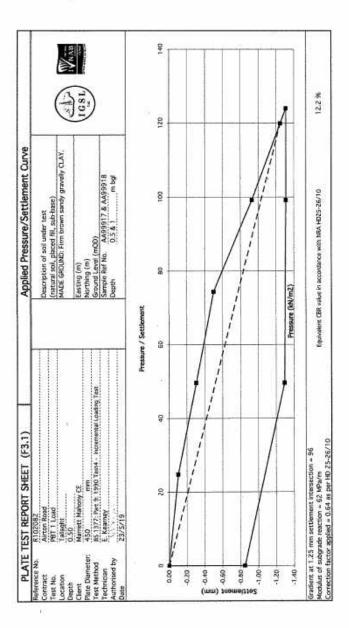
Avonmore, Delgany Report No: 21813

TP08 Photo 1 of 2

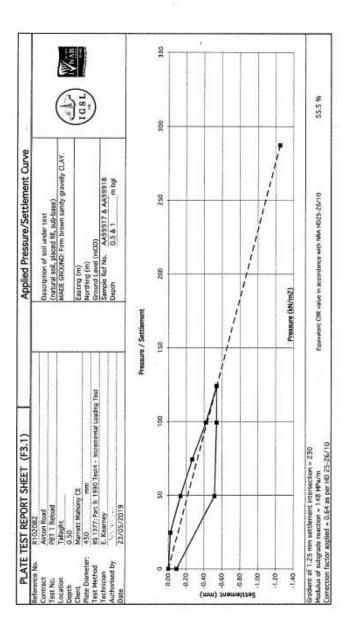
TP08 Photo 2 of 2



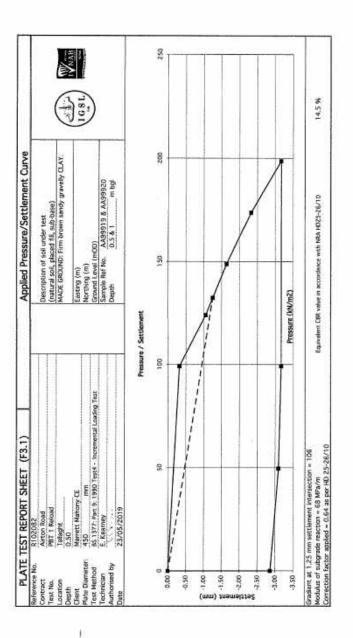
Avonmore, Delgany Report No: 21813


#### TP09 Photo 1 of 2

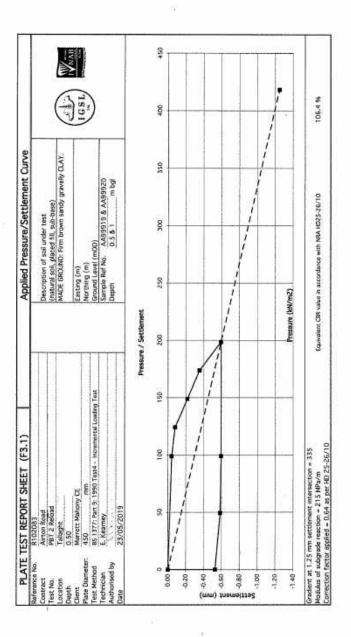


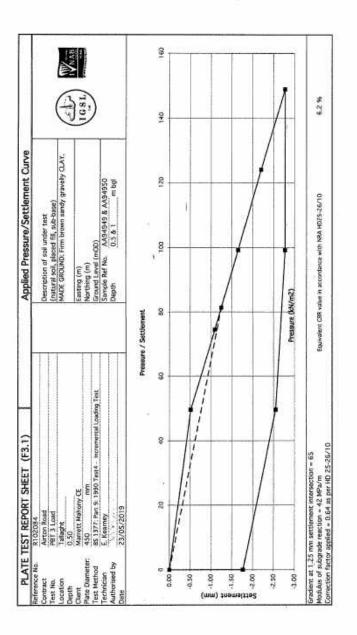

TP09 Photo 2 of 2

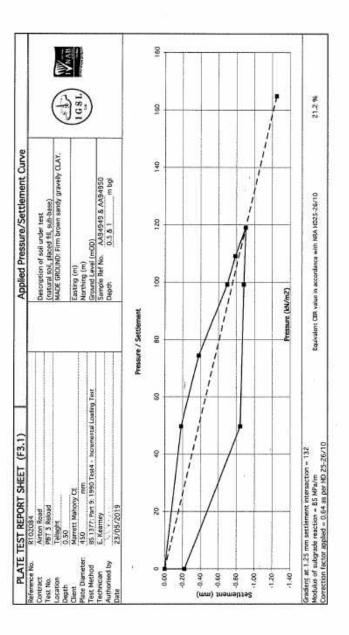


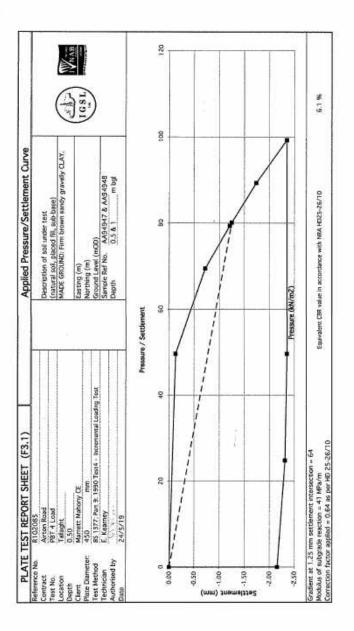

IV Plate Bearing Tests

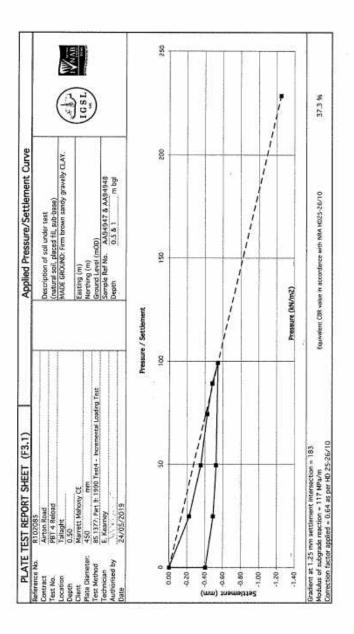



Page 1 of 2

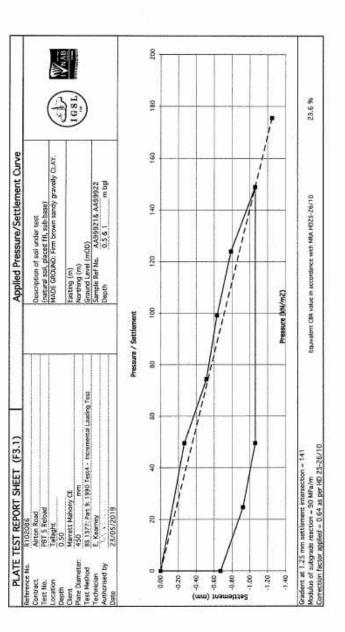


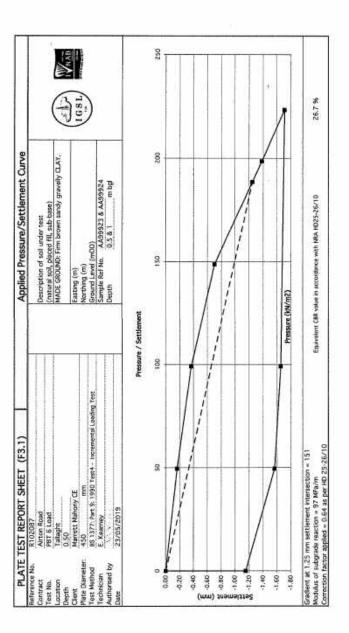


1

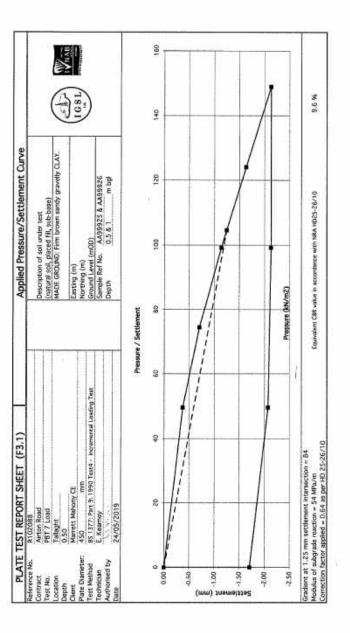


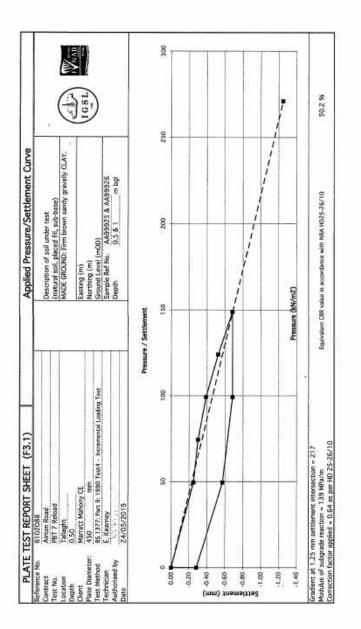


Page 2 of 2






No. AL 160 ÷27 3.7 % 40 Applied Pressure/Settlement Curve Description of soil under teat (natural soil, placed fill, sub-base) MADE GROUND: Firm brown sandy gravely CLAY. Easting (m) Northing (m) Sround Level (mOD) Samoun Ref No. <u>0.5 & 1</u> m bg 2 Equivalent CBR value in accordance with NRA HD25-26/10 1 8 Pressure (kN/m2) 8 뷶 ure / Settle Æ 8 Arten faad PRI 5 Load Tallight 0.50 Marrett Mahcoy (c. 6.50 Marrett Mahcoy (c. 8. 1377, Pan 9. 1990 Text + hoorenenda Loading Text E. Kenney h fl 1 PLATE TEST REPORT SHEET (F3.1) 8 11 Gradient at 1.25 mm settlement intersection - 48 Modulus of subgrade reaction = 31 MPa/m Correction factor applied = 0.64 as per HD 25-26/10 h 2 2/05/2019 contract Test No. Location Depth Client Plate Diameter: Plate Diameter: Technician Authorised by Data Settlement (mm) 89 89









ł.

١

Page 2 of 2

Appendix V Percolation

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | way L                                              | esign f -value fron                     | n field tests                   | (F2C) IGS     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|---------------------------------|---------------|
| Contract:<br>Fest No.<br>Client<br>Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Airton Rd,<br>SA01<br>Barrett Ma<br>28.05.20       | hony CE                                 | Contract No.                    | 21813         |
| iummary s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of ground c                                        | anditions                               |                                 | 25            |
| from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | to                                                 | Description                             |                                 | Ground water  |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.30                                               | TOPSOIL                                 | 22 - 24-5 Ubdrasso              |               |
| 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.90                                               | MADE GROUND: Firm brown mottled         | grey sandy gravelly CLAY. Has a | Dry           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | low subangular to subrounded cobble     | content. Contains infrequent    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | plastic and concrete block fragments    |                                 |               |
| 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00                                               | Stiff brown sandy gravelly CLAY. San    |                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | subangular to subrounded. Has a low     | subangular to subrounded cobb   | ole content.  |
| ield Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | Field Test                              |                                 |               |
| Depth to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Elapsed                                            | Depth of                                | Pit (D) 2.00                    | 7             |
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time                                               | Width of I                              |                                 | m             |
| (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (min)                                              | Length of                               |                                 | 100           |
| Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | farmit.                                            | Langth of                               | Indel [ ned                     | 10            |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                               | Initial dem                             | th to Water - 1.40              | lm            |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                               |                                         | h to water = 1.40               |               |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00                                               |                                         | me (mins)= 60.00                | -             |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.00                                               |                                         |                                 | 1             |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.00                                               | Top of pe                               | rmeable soil                    | lm            |
| 1,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00                                               |                                         | ermeable soil                   | -<br>m        |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00                                              | . Hotel and the second                  |                                 |               |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.00                                              | Base area                               | = 0.36                          | _m2           |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.00                                              | *Av. side area of permeable stratum     |                                 | m2            |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.00                                              | Total Exp                               | osed area = 2.16                | m2            |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.00                                              |                                         |                                 |               |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.00                                              |                                         |                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.00                                              | Infiltration rate (f) = Volume of       | f water used/unit exposed area  | a / unit time |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                         |                                 |               |
| 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | f= 0 m/min                              | or (                            | ) m/sec       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>70.00</sup> Г                                 | f= 0 m/min<br>Depth of water vs Elapsed |                                 | ) m/sec       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |                                         |                                 | ) m/sec       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>70.00</sup> Г                                 |                                         |                                 | ) m/sec       |
| and from the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70.00                                              |                                         |                                 | 0 m/sec       |
| and for the second | 70.00                                              |                                         |                                 | ) m/sec       |
| (N<br>1 Thread Posters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.00                                              |                                         |                                 | ) m/sec       |
| er - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.00<br>60.00<br>50.00<br>40.00                   |                                         |                                 | ) m/sec       |
| er - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.00<br>50.00<br>10.00<br>10.00<br>20.00<br>20.00 |                                         |                                 | ) m/sec       |
| ter 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.00<br>20.00<br>50.00<br>40.00<br>20.00<br>10.00 |                                         |                                 | 0 m/sec       |
| ter in 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.00<br>50.00<br>10.00<br>10.00<br>20.00<br>20.00 | Depth of water vs Elapsed               |                                 | 0 m/sec       |
| ter in 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.00<br>20.00<br>40.00<br>20.00<br>10.00<br>0.00  | Depth of water vs Elapsed               | Time (mins)                     |               |
| ter in 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.00<br>20.00<br>40.00<br>20.00<br>10.00<br>0.00  | Depth of water vs Elapsed               | Time (mins)                     | -             |

| AND THE REAL PROPERTY.      |                                                                     | Design f -value from field tests                                      | (F2C) IGS                |
|-----------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|
| Test No.<br>Client<br>Date: | Airton Rd,<br>SA02<br>Barrett M<br>28.05.20                         | ahony CE<br>19                                                        | 21813                    |
| Summary e                   |                                                                     |                                                                       |                          |
| from                        | to                                                                  | Description                                                           | Ground water             |
| 0.00                        | 0.20                                                                | TOPSOIL                                                               |                          |
| 0.20                        | 0.90                                                                | MADE GROUND: Firm brown mottled grey sandy gravelly CLAY. Has a       | a Dry                    |
|                             |                                                                     | low subangular to subrounded cobble content. Contains infrequent      |                          |
| 0.00                        |                                                                     | red brick fragments.                                                  |                          |
| 0.90                        | 2.00                                                                | Stiff brown sandy gravelly CLAY. Sand is medium. Gravel is fine to co |                          |
|                             |                                                                     | subangular to subrounded. Has a low subangular to subrounded cob      | ble content.             |
| Field Data                  |                                                                     | Field Test                                                            |                          |
| Depth to                    | Elapsed                                                             | Depth of Pit (D) 2.00                                                 | lm                       |
| Water                       | Time                                                                | Width of Pit (B) 0.30                                                 | m                        |
| (m)                         | (min)                                                               | Length of Pit (L) 1.50                                                | m                        |
| 1.411040                    |                                                                     | 11454 - 11454 - 11454 - 11454 - 11454 - 11454 - 11454 - 11454         |                          |
| 1.10                        | 0.00                                                                | Initial depth to Water = 1.10                                         | m                        |
| 1,10                        | 1.00                                                                | Final depth to water = 1.10                                           | m                        |
| 1.10                        | 2.00                                                                | Elapsed time (mins)= 60.00                                            |                          |
| 1.10                        | 3.00                                                                |                                                                       | 13 C                     |
| 1.10                        | 4.00                                                                | Top of permeable soil                                                 | m                        |
| 1.10                        | 5.00                                                                | Base of permeable soil                                                | m                        |
| 1.10                        | 10.00                                                               |                                                                       |                          |
| 1.10                        | 15.00                                                               | Base area= 0.45                                                       | m2                       |
| 1.10                        | 20.00                                                               | *Av, side area of permeable stratum over test perior 3.24             | m2                       |
| 1.10                        | 25.00                                                               | Total Exposed area = 3.69                                             | m2                       |
| 1.10                        | 30.00                                                               |                                                                       |                          |
|                             | 10.00                                                               | 1                                                                     |                          |
| 1.10                        | 40.00                                                               |                                                                       |                          |
| 1.10                        | 40.00<br>60.00                                                      | Infiltration rate (f) - Volume of water used/unit exposed area        | a / unit time            |
|                             |                                                                     |                                                                       |                          |
|                             |                                                                     | f= 0 m/min or 0                                                       | a / unit time<br>0 m/sec |
| 1.10                        |                                                                     |                                                                       |                          |
| 1.10                        | 70.00<br>50.00<br>40.00                                             | f= 0 m/min or 0                                                       |                          |
| 1.10                        | 60.00<br>70.00<br>60.00<br>50.00<br>40.00                           | f= 0 m/min or 0                                                       |                          |
| 1.10                        | 60.00<br>70.00<br>60.00<br>50.00<br>40.00<br>30.00<br>10.00         | f= 0 m/min or 0                                                       |                          |
| 1.10                        | 60.00<br>70.00<br>60.00<br>50.00<br>40.00<br>20.00                  | f= 0 m/min or (<br>Depth of water vs Elapsed Time (mins)              |                          |
| 1.10                        | 60.00<br>70.00<br>60.00<br>50.00<br>40.00<br>20.00<br>10.00<br>0.00 | f= 0 m/min or (<br>Depth of water vs Elapsed Time (mins)              | 0 m/sec                  |
| 1.10                        | 60.00<br>70.00<br>60.00<br>50.00<br>40.00<br>20.00<br>10.00<br>0.00 | f= 0 m/min or 0<br>Depth of water vs Elapsed Time (mins)              | 0 m/sec                  |

| Soaka                                    | away [                        | Design f -value from field test                        | S            | (F2C) IGSI    |
|------------------------------------------|-------------------------------|--------------------------------------------------------|--------------|---------------|
| Contract:<br>Test No.<br>Client<br>Date: | SA03<br>Barrett M<br>28.05.20 | ahony CE<br>19                                         | ntract No.   | 21813         |
|                                          | of ground (                   |                                                        |              |               |
| from                                     | to                            | Description                                            |              | Ground water  |
| 0.00                                     | 0.20                          | Concrete                                               |              |               |
| 0.20                                     | 2.00                          | MADE GROUND: Stiff brown sandy gravelly CLAY. Sand     | s medium.    | Dry           |
|                                          |                               | Gravel is fine to coarse and subangular to subrounded. | Has a mediur | n             |
| _                                        |                               | subangular to subrounded cobble content.               |              | 1             |
| Field Data                               |                               | Field Test                                             |              |               |
| Depth to                                 | Elapsed                       | Depth of Pit (D)                                       | 2.00         | lm            |
| Water                                    | Time                          | Width of Pit (B)                                       | 0.30         | m             |
| (m)                                      | (min)                         | Length of Pit (L)                                      | 1.30         | m             |
| 1.167.56                                 | (Acores)                      |                                                        |              |               |
| 1.04                                     | 0.00                          | Initial depth to Water =                               | 1.04         | m             |
| 1.04                                     | 1.00                          | Final depth to water =                                 | 1.04         | m             |
| 1.04                                     | 2.00                          | Elapsed time (mins)=                                   | 60.00        |               |
| 1.04                                     | 3.00                          |                                                        |              | - 5.A.<br>    |
| 1.04                                     | 4.00                          | Top of permeable soil                                  |              | m             |
| 1.04                                     | 5.00                          | Base of permeable soil                                 |              | m             |
| 1.04                                     | 10.00                         | State Aller and the second second                      |              |               |
| 1.04                                     | 15.00                         | Base area=                                             | 0.39         | m2            |
| 1.04                                     | 20,00                         | *Av. side area of permeable stratum over test perio    | 3.072        | m2            |
| 1.04                                     | 25.00                         | Total Exposed area =                                   | 3.462        | m2            |
| 1.04                                     | 30.00                         |                                                        |              |               |
| 1.04                                     | 40.00                         |                                                        |              |               |
| 1.04                                     | 60.00                         | Infiltration rate (f) = Volume of water used/unit      | exposed are  | a / unit time |
|                                          |                               |                                                        |              | 20.05/200751  |
|                                          | -                             | f= 0 m/min or                                          | 1            | 0 m/sec       |
|                                          |                               |                                                        |              | - t           |
|                                          | 70.00<br>50.00                | Depth of water vs Elapsed Time (mins)                  |              | _             |
| 1                                        | ge0.00                        |                                                        |              |               |
| 1                                        | E50.00                        |                                                        |              |               |
|                                          | ₿<br>\$40.00                  |                                                        |              |               |
|                                          | \$30.00                       |                                                        | - Charles    |               |
| E I                                      | man ne                        |                                                        | 1            |               |
| E I                                      | 800.00 T                      |                                                        |              |               |
| E 1<br>1                                 | 20.00                         |                                                        | :            |               |
| E 1<br>1                                 | ő.                            |                                                        | :            |               |
| E 1<br>1                                 | 10.00                         |                                                        | ÷            |               |
| E 1<br>1                                 | 20.00 -                       | 0.20 0.40 0.60 0.80                                    | 1.00         | 1.20          |
| E 1<br>1                                 | 10.00                         |                                                        | 1.00         | 1.20          |
| E 1<br>1                                 | 10.00                         | ) 0.20 0.40 0.60 0.80<br>Depth to Water (m)            | 1.00         | 1.20          |

Appendix VI Laboratory

a. Geotechnical

| Totaled in accordance with IS317/7Fart 2:1980, Glauses 3.2", 4.3, 4.4.8.5.3         Totaled in accordance with IS317/7Fart 2:1980, Glauses 3.2", 4.3, 4.4.8.5.3           Report No.         Report No.         21813         Contract Name:         Anton Road, Tallaght, Dublin           Customer         Barrett Mahony Consulting Engineers, Sandwith House, S2-54 Sandwith Street Lower, Dublin 2.         Contract No.         21813         Contract No.         21813         Contract No.         21813         Contract No.         21813         Contract Name:         Anton Road         Anton Road         Contract Name:         Anton Road         Anton Road<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Materiais Laboratory<br>Unit J5, M7 Business Park<br>Newhall, Naas<br>Co. Klidare | ž                             |                        |                | Determ                | ination of                   | Moisture           | Determination of Moisture Content, Liquid & Plastic Limits | , Liquid 8                      | & Plastic                     | Limits                       |                              |                           | INAE                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|------------------------|----------------|-----------------------|------------------------------|--------------------|------------------------------------------------------------|---------------------------------|-------------------------------|------------------------------|------------------------------|---------------------------|-------------------------------|
| No.         H102259         Contract No.         21813         Contract Name:         Anton Road, Tallapht, Dublin 2           ner         Barrett Mahony Consulting Engineers, Sandwith House, 62-54 Sandwith Street Lower, Dublin 2         Anton Road, Tallapht, Dublin 2           ss Recaived:         06/06/19         Date Tested:         07/06/19         Pastic         07/06/19           e No.         Depth (m)         Lab. Ref         Sample         Moisture         Limit %,                                                                                                                                                                                                                                                               | 045 846176                                                                        | 1.0                           |                        |                | lested in ac          | cordance                     | MILL IS 137        | ALC NBALL                                                  | au, clause                      | 5 3 21.4 3                    | 4.4 & 5.3                    |                              |                           |                               |
| Instruction         Barret Mahony Consulting Engineers, Sandwith House, 62-54 Sandwith Street Lower, Dublin 2           Is Received:         06/06/19         Date Tested:         07/06/19           Is No.         Depth (m)         Lab. Ref         Sample         Molisture         Limit %, Limit %                                                                                                                                                             | Report No.                                                                        |                               |                        | Contract       | No.                   | 21813                        |                    | Contract N                                                 | ame:                            | Airton Roa                    | id , Tallagh                 | t, Dublin                    |                           |                               |
| Bit Received:         06/06/19         Date Tested:         07/06/19         Plast ic         Plast ic <th>Customer</th> <th>Barrett Mal</th> <th>nony Consul</th> <th>ting Engin</th> <th>eers, Sandw</th> <th>rith House,</th> <th>52-54 Sar</th> <th>idwith Stree</th> <th>et Lower, D</th> <th>Jublin 2</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Customer                                                                          | Barrett Mal                   | nony Consul            | ting Engin     | eers, Sandw           | rith House,                  | 52-54 Sar          | idwith Stree                                               | et Lower, D                     | Jublin 2                      |                              |                              |                           |                               |
| e No. Depth (m) Lab. Ref Sample Molsture Liquid Flastic Plastic Plastic Plastic Plastic Plastic Reservation Liquid Limit Conservation 10,416 Limit Conservation 10,416 Limit Conservation 10,416 Limit Conservation 10,416 Limit Conservation 10,417 17 55 WS 4.4.4 C.L. 131 1.0 A19/2425 B 13 3.3 1.6 1.7 17 30 WS 4.4.4 C.L. 131 1.0 A19/2425 B 13 3.3 1.6 1.7 17 30 WS 4.4.4 C.L. 131 1.0 A19/2425 B 13 3.3 1.6 1.7 17 17 55 WS 4.4.4 C.L. 10,911 4.0 A19/2425 B 15 3.0 16 1.7 17 17 55 WS 4.4.4 C.L. 10,911 4.0 A19/2426 B 15 3.0 16 1.4 13 4.6 1.4 13 4.4 C.L. 10,911 4.0 A19/2442 B 8.1 3.0 16 1.4 13 4.6 1.4 13 4.4 C.L. 10,912 4.1 1.0 A19/2442 B 8.1 3.0 16 1.4 13 4.6 1.4 13 4.4 C.L. 10,912 4.1 1.0 A19/2445 B 2.5 NP NP 7 4.1 13 4.6 NY 4.4 C.L. 10,912 4.1 1.0 A19/2456 B 7.9 2.8 NP NP 7 4.1 13 4.6 NY 7 4.4 C.L. 10,913 4.1 1.1 1.0 A19/2456 B 7.9 2.8 NP NP 7 4.1 13 4.6 NY 7 4.4 C.L. 1472 5.0 A19/2456 B 7.9 2.8 NP NP 7 4.1 13 4.6 NY 7 4.4 C.L. 1472 5.0 A19/2456 B 7.9 2.8 NP NP 7 4.1 17 4.6 NY 7 4.4 C.L. 1412 4.0 A19/2456 B 7.9 2.8 NP NP 7 4.1 NY 7 4.4 C.L. 1418 5.0 NY 7 4.4 C.L. 1418 5.0 A19/2456 B 7.9 2.8 NP NP 7 4.1 NY 7 4.4 C.L. 1418 5.0 NY 7 4.4 C.L. 1418 5.0 A19/2456 B 7.9 2.8 NP NP 7 3.1 NY 7 4.4 C.L. 1418 5.0 NY 7 4.4 C.L. 1418 5.0 NY 7 4.4 C.L. 1418 5.0 A19/2456 B 7.9 2.8 NP NP 7 3.1 NY 7 4.4 C.L. 1418 5.0 A19/2456 B 7.9 2.8 NP NP 7 3.1 NY 7 4.4 C.L. 1418 5.0 A19/2456 B 7.9 2.8 NP NP 7 3.1 NY 7 4.4 C.L. 1418 5.0 A19/2456 B 7.9 2.8 NP NP 7 3.1 NY 7 4.4 C.L. 1418 5.0 NY 7 5.0 NY 7 4.4 C.L. 1418 5.0 NY 7 5.0 NY 7 4.4 C.L. 1418 5.0 NY 7 5. | Samples R                                                                         |                               | 06/06/19               | Date Tes       | ted:                  | 07/06/19                     |                    |                                                            |                                 |                               |                              |                              |                           |                               |
| 929         2.0         A19/2420         B         11         33         16         17         57         WS         4.4         C.L           9512         3.0         A19/2422         B         13         33         16         17         30         WS         4.4         C.L           940         2.0         A19/2422         B         13         36         17         19         47         WS         4.4         C.L           951         1.0         A19/2425         B         13         36         17         17         55         WS         4.4         C.L           951         1.0         A19/2432         B         15         30         16         14         53         WS         4.4         C.L           051         4.0         A19/2445         B         8.1         30         16         14         53         WS         4.4         C.L           051         4.0         A19/2445         B         8.0         27         14         13         46         WS         4.4         C.L           051         4.0         A19/2445         B         8.0         2.5         NP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample No                                                                         | _                             | Lab. Ref               | Sample<br>Type | Moisture<br>Content % | Liquid<br>Limit %            | Plastic<br>Limit % | Plasticity<br>Index                                        | %<br><425µm                     | Preparation                   | Liquid Limit<br>Clause       | Clansfication<br>(B66990)    | Description               |                               |
| 3512         3.0         A19/2422         B         18         33         16         17         30         WS         4.4         C.L           940         2.0         A19/2425         B         13         36         17         19         47         WS         4.4         C.L           3517         1.0         A19/2425         B         13         36         17         17         55         WS         4.4         C.L           958         1.0         A19/2442         B         81         30         16         14         53         WS         4.4         C.L           966         4.0         A19/2445         B         81         30         17         13         46         WS         4.4         C.L           7470         3.0         A19/2445         B         8.0         27         14         13         46         WS         4.4         C.L           7470         3.0         A19/2455         B         3.0         NP         NP         NP         NP         4.4         C.L           7470         5.0         A19/2455         B         3.0         NS         4.4         C.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AA99929                                                                           |                               | A19/2420               | B              | 11                    | 33                           | 16                 | 17                                                         | 57                              | WS                            | 4.4                          | CL                           | Greybiden sand            | dy gravely CLAY               |
| 040         2.0         A19/2425         B         13         36         17         19         47         WS         44         C1           3517         1.0         A19/2425         B         12         34         17         17         55         WS         44         C1           926         1.0         A19/2432         B         15         36         16         14         53         WS         44         C1           036         4.0         A19/2442         B         8.1         30         16         14         53         WS         44         C1           7470         3.0         A19/2445         B         8.0         27         14         13         46         WS         44         C1           7470         3.0         A19/2465         B         3.0         32         17         60         WS         44         CL           7470         5.0         A19/2465         B         3.0         75         17         60         WS         44         CL           7410         5.0         A19/2465         B         3.0         NS         4.4         CL           4415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AA113512                                                                          | Ц.                            | A19/2422               | 8              | 18                    | 33                           | 16                 | 17                                                         | 30                              | WS                            | 4.4                          | CL                           | Black slightly sau        | ndy, gravely, CLAY            |
| 3517         1.0         A19/2432         B         12         34         17         17         55         WS         44         CL           928         1.0         A19/2442         B         15         36         18         15         35         WS         44         CL           091         4.0         A19/2442         B         8.1         30         16         14         53         WS         44         CL           0705         3.0         A19/2442         B         8.0         27         14         13         46         WS         44         CL           7470         3.0         A19/2455         B         9.0         32         15         17         60         WS         44         CL           7472         5.0         A19/2455         B         9.0         32         15         17         60         WS         44         CL           7410         5.0         A19/2455         B         3.0         21         16         16         16         16         16         16         16         16         16         17         60         WS         44         CL         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AA99940                                                                           |                               | A19/2425               | В              | 13                    | 36                           | 17                 | 19                                                         | 47                              | WS                            | 4,4                          | 5                            | Dark brown sark           | dy gravely CLAY               |
| 828         1.0         A19/2440         B         15         36         18         18         53         WS         4.4         C.1           0091         4.0         A19/2442         B         8.1         30         16         14         53         WS         4.4         C.1           7470         3.0         A19/2442         B         8.0         27         14         13         46         WS         4.4         C.1           7470         3.0         A19/2445         B         9.0         32         15         17         60         WS         4.4         C.1           7472         5.0         A19/2455         B         9.0         32         15         17         60         WS         4.4         C.1           660         M5/2457         0         9.6         25         NP         NP         41         WS         4.4         C.1           1412         4.0         A19/2457         0         9.6         25         NP         NP         NS         4.4         C.1           1412         4.0         A1         WS         4.4         WS         4.4         C.1         NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AA113517                                                                          |                               | A19/2432               | 8              | 12                    | 34                           | 17                 | 17                                                         | 55                              | WS                            | 4.4                          | CL                           | the brow signal well      | N. (Pareny, CLAY wentered con |
| (031         4.0         A19/2442         B         8.1         30         16         14         53         WS         4.4         C.L           7470         3.0         A19/2443         B         9.8         25         NP         NP         58         WS         4.4         C.L           7470         3.0         A19/2445         B         9.0         32         15         17         60         WS         4.4         C.L           7472         5.0         A19/2445         B         9.0         32         15         17         60         WS         4.4         C.L           660         A19/2457         0         9.6         25         NP         NP         41         WS         4.4         C.L           1412         4.0         A10/2457         0         9.6         25         NP         NP         41         WS         4.4         C.L           1412         4.0         A19/2457         0         9.6         25         NP         NP         NS         4.4         C.L           1413         5.0         A19/2459         B         3.2         15         NP         NS         4.4 <td>AA99928</td> <td></td> <td>A19/2440</td> <td>8</td> <td>15</td> <td>36</td> <td>18</td> <td>18</td> <td>53</td> <td>WS</td> <td>4.4</td> <td>10</td> <td>Brown sandy gra</td> <td>weby CLAY</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AA99928                                                                           |                               | A19/2440               | 8              | 15                    | 36                           | 18                 | 18                                                         | 53                              | WS                            | 4.4                          | 10                           | Brown sandy gra           | weby CLAY                     |
| 0056         4.0         A19/2443         B         9.8         25         NP         NP         58         WS         4.4         CL           7470         3.0         A19/2445         B         8.0         27         14         13         4.6         WS         4.4         CL           7472         5.0         A19/2445         B         9.0         32         15         17         60         WS         4.4         CL           680         4.0         A19/2457         0         9.6         25         NP         NP         41         WS         4.4         CL           1412         4.0         A19/2457         0         9.6         25         NP         NP         41         WS         4.4         CL           1412         4.0         A19/2457         0         9.6         25         NP         NP         41         WS         4.4         CL           1413         5.0         A19/2459         B         12         32         16         16         45         WS         4.4         CL           160         WS         4.0         NP         NP         NP         33 <td< td=""><td>AA38091</td><td>4.0</td><td>A19/2442</td><td>8</td><td>8.1</td><td>30</td><td>16</td><td>14</td><td>53</td><td>SM</td><td>4.4</td><td>CL</td><td>Grey stayers, samply, 50%</td><td>Bollow Artin the Thys</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AA38091                                                                           | 4.0                           | A19/2442               | 8              | 8.1                   | 30                           | 16                 | 14                                                         | 53                              | SM                            | 4.4                          | CL                           | Grey stayers, samply, 50% | Bollow Artin the Thys         |
| 7470         3:0         A19/2444         B         8:0         27         14         13         46         WS         4.4         C.L           7472         5:0         A19/2445         B         9:0         32         15         17         60         WS         4.4         C.L           669         4.0         A19/2455         B         7.9         28         15         13         34         WS         4.4         C.L           1412         4.0         A19/2457         0         9.6         25         NP         NP         41         WS         4.4         C.L           1412         4.0         A19/2459         B         12         32         16         16         45         WS         4.4         C.L           1419         5.0         A19/2459         B         3.9         21         NP         NP         33         WS         4.4         C.L           16m:         WS - Wet size of a concertation of the standard due to paint         NP         33         WS         4.4         C.L           16m:         WS - Wet size of the standard due to paint         NP         33         WS         4.4         C.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AA38096                                                                           |                               | A19/2443               | 8              | 9.8                   | 25                           | dN                 | ЧN                                                         | 58                              | SM                            | 4.4                          |                              | Dist Novem Kauber Hong    | TSI gradiy, SLT               |
| 7472         5.0         A19/2445         B         9.0         32         15         17         60         WS         4.4         C L           689         4.0         A19/2456         B         7.9         28         15         13         34         WS         4.4         C L           1406         6.0         A19/2457         0         9.6         25         NP         NP         41         WS         4.4         C L           1412         4.0         A19/2459         B         12         32         16         16         45         WS         4.4         C L           1419         5.0         A19/2459         B         3.9         21         NP         NP         33         WS         4.4         C L           160         WS - Wet size of a to some size of size of a size of size of a to some size of size of a size of size of a to some size of size of a to some size of size of a to some size of size of a size of size of a size of size of a to some size of size of a to some size of size of a to some size of size of size of a to some size of size of a to some size of size of size of size of a to some size of siz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AA117470                                                                          |                               | A19/2444               | 8              | 8.0                   | 27                           | 14                 | 13                                                         | 46                              | WS                            | 4.4                          | CL                           | Black sandy gran          | volly CLAY                    |
| 6699         4.0         A19/2456         B         7.9         28         15           1406         6.0         A19/2457         0         9.6         25         NP           4412         4.0         A19/2457         0         9.6         25         NP           4419         5.0         A19/2459         B         12         32         16           4419         5.0         A19/2459         B         3.9         21         NP           10n:         W5 - Wet slewed         Sample Type: B - Bulk Disturbed         Indisturbed         An         An         An           10n:         W5 - Wet slewed         Sample Type: B - Bulk Disturbed         Indisturbed         Indisturbed           Init< 4.3 Cone Peretrometer are point method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AA117472                                                                          |                               | A19/2445               | 8              | 9.0                   | 32                           | 15                 | 17                                                         | 60                              | WS                            | 4.4                          | CL                           | Black slightly sai        | ndy, gravely, CLAY            |
| 1406         6.0         A19/2457         0         9.6         25         NP           4412         4.0         A19/2450         B         12         32         16           4419         5.0         A19/2450         B         3.9         21         NP           4419         5.0         A19/2450         B         3.9         21         NP           10n:         WS - Wet slewed         A19/2459         B         3.9         21         NP           10n:         WS - Wet slewed         Sample Type: B - Bulk Disturbed         N         N         N         N           10n:         WS - Wet slewed         Sample Type: B - Bulk Disturbed         N         N         N         N           10n:         WS - Wet slewed         Sample Type: B - Bulk Disturbed         N         N         N         N           10n:         Lone Preventionmet definitive method         U - Undisturbed         N         N         N         N           10n:         Lone Preventionmet revelocitiester and point method         U - Undisturbed         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AA10699                                                                           |                               | A19/2456               | B              | 7.9                   | 28                           | 15                 | 13                                                         | 34                              | WS                            | 4.4                          | CL                           | Bleck sandy gran          | vely CLAY                     |
| 4412         4.0         A19/2460         B         12         32         16           4419         5.0         A19/2459         B         3.9         21         NP           4419         5.0         A19/2459         B         3.9         21         NP           Ion:         WS - Wet stewed         Sample Type: B - Butk Disturbed         N         N         N           Ion:         WS - Wet stewed         Sample Type: B - Undisturbed         N         N         N           AR - As received         Sample Type: B - Undisturbed         U - Undisturbed         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <td>AA111406</td> <td>Ű,</td> <td>A19/2457</td> <td>0</td> <td>9.6</td> <td>25</td> <td>dN</td> <td>NP</td> <td>41</td> <td>WS</td> <td>4.4</td> <td></td> <td>Black slightly sau</td> <td>ndy, gravely, SLT</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AA111406                                                                          | Ű,                            | A19/2457               | 0              | 9.6                   | 25                           | dN                 | NP                                                         | 41                              | WS                            | 4.4                          |                              | Black slightly sau        | ndy, gravely, SLT             |
| 4419     5.0     A19/2459     B     3.9     21     NP       Ion:     WS - Wet steved     Sample Type:     B - Bulk Disturbed       AR - As received     Sample Type:     B - Undisturbed       Int:     +.3 Core Pensioneare definitive method       4.4 Core Pensioneare method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AA114412                                                                          |                               | A19/2460               | 8              | 12                    | 32                           | 16                 | 16                                                         | 45                              | WS                            | 4.4                          | CL                           | Black sandy grav          | vally CLAY                    |
| Ion: WS - Wet sieved Sample Type: B - Buit: Disturbed AR - As received Sample Type: B - Buit: Disturbed IN - Non Patishin MR - 4.3 Core Prentioneare definitive method 4.4 Core Perentometer are point method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AA114419                                                                          | 1                             | A19/2459               | 8              | 3.9                   | 51                           | ЧN                 | ΝP                                                         | 33                              | WS                            | 4,4                          |                              | Elect shy, serch, GRA)    | ALL with many collifies       |
| Ion: WS - Wet served Sample Type: B - But Disturbed<br>AR - As received U - Undisturbed<br>NP - Non pasts<br>mit 4.3 Cone Penetrometer inte point method<br>4.4 Cone Penetrometer inte point method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                   |                               |                        |                |                       |                              |                    |                                                            |                                 |                               |                              |                              |                           |                               |
| NP - Non received<br>NP - Non Persion and Celinitive method<br>mit 4.3 Cone Persioneter inte point method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Preparation:                                                                      | WS - Wet sign                 | ber                    |                | Sample Type:          | B - Bulk Distu               | rbod               | Hemarks:<br>Deerder sonde                                  | a share of                      | received                      |                              |                              |                           |                               |
| 4.4 Cone Penetrometer time point method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Liquid Limit                                                                      | NP - Non plas<br>4.3 Cone Pen | alc<br>elrometer defin | tive method    |                       |                              | 8                  | NOTE: Claur<br>Opinions and                                | se 3.2 of BS1<br>interpretation | 377 is a "with<br>are outside | drawn" stand<br>the scope of | ard due to p<br>accreditatio | ublication of ISC<br>n.   | 117892-1:2014                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clause:                                                                           | 4.4 Cone Pen                  | etrometer time p       | baint method   |                       |                              |                    | The results re                                             | alate to the sp                 | recimens test                 | ed. Any reme                 | cining materi                | al will be retaine        | ed for one month.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IGSL LTD Ma                                                                       |                               | erials Laboratory      |                |                       | H Burne (Laboratory Mananer) | ahoratory 1        | Mananeri                                                   |                                 | A Repair                      |                              |                              | 25/06/19                  | 1 of 1                        |

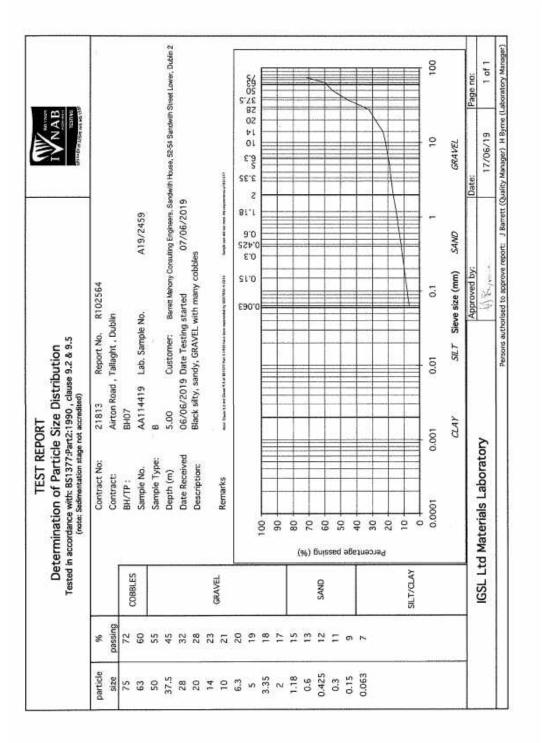
R102259.PLxis

DEDODT

ŭ

Tmp: PUI Rev 02/10

|                  |              | Tested i  | n accordance v<br>(note: St | Tested in accordance with: 8S1377:Part2:1990 , clause 9.2 & 9.5 (note: Sedimentation stage not accredited) | t2:1990 , claus<br>ot accredited) | e 9.2 & 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                                                                                                                               | n ter bir Alfen is operate<br>Notaen                                                     |                                              |
|------------------|--------------|-----------|-----------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|
| particle<br>size | %<br>Dassing |           | 0.0                         | Contract No:<br>Contract:                                                                                  | 21813<br>Airton Road              | 21813 Report No. R<br>Airton Road Talladht Dublin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R102565                 |                                                                                                                                                               |                                                                                          |                                              |
|                  | 100          | COBBLES   |                             | BH/TP:                                                                                                     | TP02                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          |                                              |
|                  | 3 8          |           | U) U                        | Sample No.<br>Samula Tunar                                                                                 | AA113512<br>B                     | AA113512 Lab. Sample No.<br>R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No.                     | A19/2422                                                                                                                                                      |                                                                                          |                                              |
| 37.5             | 32           |           | , ם                         | Depth (m)                                                                                                  | 3.00                              | Customer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Barrett Mehony Co       | neutrino Engineers. Sand                                                                                                                                      | Barnet Mehonv Consultivo Endineers. Sandwith House. 52-54 Sandwith Street Lower Durkin 2 | h Street Lower 7                             |
|                  | 88           |           |                             | Date Received                                                                                              | 06/06/2015                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | started                 | 07/06/2019                                                                                                                                                    |                                                                                          |                                              |
|                  | 83           |           | 5                           | Description:                                                                                               | Black slightly                    | Black slightly sandy, gravelly, CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | by. CLAY                |                                                                                                                                                               |                                                                                          |                                              |
|                  | 79           | COAVEL    |                             |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          |                                              |
|                  | 75           | BRAVEL    | æ                           | Remarks                                                                                                    | Not One 17 et Design              | and the state of the state of a still of the state of the | INCOMPANY AND INCOMPANY |                                                                                                                                                               |                                                                                          |                                              |
|                  | 70           |           |                             |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          | 5                                            |
|                  | 67           |           |                             |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :1:0<br>907             | 5,0<br>1,11<br>0,6<br>0,5<br>0,3<br>1,11<br>2,2<br>2,2<br>2,3<br>2,3<br>2,3<br>3,4<br>2,5<br>3,5<br>3,5<br>3,5<br>3,5<br>3,5<br>3,5<br>3,5<br>3,5<br>3,5<br>3 | 01<br>2<br>2<br>3<br>3<br>3<br>3                                                         | 54<br>05<br>28<br>05<br>05<br>05<br>05<br>05 |
| 3.35             | 64           |           | 1001                        |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                       | 0                                                                                                                                                             | WHELL!                                                                                   |                                              |
|                  | 60           |           | - 06                        |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          | X                                            |
|                  | 56           |           | 80                          |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               | X                                                                                        |                                              |
| 0.6              | 51           | 10.11     | 9%)                         |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          |                                              |
| 0.425            | 49           | SAND      | Guis                        |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               | /                                                                                        |                                              |
| -                | 46           |           |                             |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | /                                                                                                                                                             |                                                                                          |                                              |
| 0.15             | 14           |           |                             |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1                      |                                                                                                                                                               |                                                                                          |                                              |
| 0.063            | 33           |           |                             |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |                                                                                                                                                               |                                                                                          |                                              |
| 0.041            | 28           |           | ຸ<br>ອີ                     |                                                                                                            |                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                       |                                                                                                                                                               |                                                                                          |                                              |
| 0.029            | 26           |           | 20                          |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          |                                              |
| 0.018            | 24           | CILTICIAN | 10                          |                                                                                                            | 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          |                                              |
| 0.011            | 61           | SELVERAL  | -                           |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          |                                              |
| 0.008            | 16           |           | 0.0001                      |                                                                                                            | 0.001                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                     | 1                                                                                                                                                             | 10                                                                                       | 100                                          |
| 0.005            | 13           |           |                             |                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                                                                                                                               |                                                                                          |                                              |
| 0.002            | 6            |           |                             |                                                                                                            | CLAY                              | SILT Sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sieve size (mm)         | SAND                                                                                                                                                          | GRAVEL                                                                                   |                                              |
|                  |              | 1001      | - Manadal L                 | 1 - handler                                                                                                | 23                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Approved by:            |                                                                                                                                                               | Date:                                                                                    | Page no:                                     |
|                  |              | ופאר דנו  | Materials                   | IGSE LTO MATERIAIS LADOFATORY                                                                              |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 R                    |                                                                                                                                                               | 17/06/19                                                                                 | 1 14 1                                       |


| TEST REPORT<br>Tested in accordance with: BSI 3772-Particle Size Distribution<br>Tested in accordance with: BSI 3772-Particle Size Distribution<br>Tested in accordance with: BSI 3772-Particle Size Distribution<br>Contract: Sedimentation stage not accredited)<br>Contract: Marton Road, Tallaght, I<br>BH/TP: TPD6<br>Contract: Ariton Road, Tallaght, I<br>BH/TP: TPD6<br>Sample No. 21813 Report No<br>Contract: Ariton Road, Tallaght, I<br>BH/TP: TPD6<br>Sample Type: B<br>Depth (m) 1.00 Customer:<br>Dark brown slightly sand<br>Sample passing<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>SAND<br>Contract: Ariton Road, Tallaght, I<br>COBBLES<br>Sample Type: B<br>Depth (m) 1.00 Customer:<br>Dark brown slightly sand<br>Customer:<br>Dark brown slightly sand<br>Customer:<br>Dark brown slightly sand<br>Customer:<br>Dark brown slightly sand<br>Customer:<br>Contract: Ariton Road, Tallaght, I<br>Customer:<br>Sample Passing<br>Sample Passing<br>Contract: Ariton Road, Tallaght, I<br>Customer:<br>Contract: Ariton Road, Tallaght, I<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Customer:<br>Custom |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|                                                                                                                                                                             |              |                               |         |                 |              | Customer: Barret Mahony Corsulting Engineers, Sandwith House, 62-54 Sandwith Street Lower, Ducin 2 |                                 |                                           |        |                                                                                                         | s   | 14 28 30 37                  |      |    |      |      |           |     | A    |       |       |       |                                         |          | 100    |        |                 | Page no:     | 3 1 of 1                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|---------|-----------------|--------------|----------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|--------|---------------------------------------------------------------------------------------------------------|-----|------------------------------|------|----|------|------|-----------|-----|------|-------|-------|-------|-----------------------------------------|----------|--------|--------|-----------------|--------------|-------------------------------|
| IN AB                                                                                                                                                                       |              |                               |         |                 |              | Indwith House, 52-54 S                                                                             |                                 |                                           |        |                                                                                                         | s   | 10<br>2'3<br>2'3<br>5<br>2'3 |      |    |      |      | /         |     |      |       |       |       |                                         | 1111111  | 10     | 100.11 | GRAVEL          | Date:        | 17/06/19                      |
|                                                                                                                                                                             |              |                               |         | A19/2438        |              | nsulting Engineers, Sa                                                                             | 07/06/2019                      |                                           |        |                                                                                                         | s   | 5.0<br>54.0<br>1.1           |      |    |      |      |           | 1   |      |       |       |       |                                         |          | 1      |        | SAND            |              |                               |
|                                                                                                                                                                             | R102567      | uldu                          |         | e No.           |              | Barrett Mahony Co                                                                                  | g started                       | Brown slightly sandy, gravelly, SILT/CLAY |        | A LOCAL DAY (1911) 4 (1919) A                                                                           | 1   | 90.0                         |      |    |      |      |           |     | 1    |       |       |       |                                         |          | 0.1    |        | Sieve size (mm) | Approved by: | A Rome                        |
| tribution<br>use 9.2 & 9.5                                                                                                                                                  | Report No.   | Airton Road, Tallaght, Dublin | E       | Lab. Sample No. |              | Customer:                                                                                          | 06/06/2019 Date Testing started | htly sandy, grav                          |        | times these 3.2 we live as 9.6 of 611.17.9 million (2019) free block factor reconstruction (2011 e) 311 |     |                              |      | +  |      |      |           |     |      |       | /     | A     |                                         |          | 0.01   |        | SILT S          |              |                               |
| PORT<br>le Size Dist<br>art2:1990 , cla<br>e not accredited)                                                                                                                | 21813        | Airton Roa                    | TP08    | AA99934         | 8            | 2.80                                                                                               | 06/06/20                        | Brown slig                                |        | the Descripted for                                                                                      |     |                              |      |    |      |      |           |     |      |       |       |       |                                         | -        | 0.001  |        | CLAY            |              | ≥                             |
| TEST REPORT<br>Determination of Particle Size Distribution<br>Tested in accordance with: BS1377:Part2:1990 , clause 9.2 & 9.5<br>(note: Sedimentation stage not accredited) | Contract No: | Contract:                     | BH/TP:  | Sample No.      | Sample Type: | Depth (m)                                                                                          | Date Received                   | Description:                              |        | Remarks                                                                                                 |     |                              | 1001 | 06 | 80   | 02   | 60        |     | 2    | - 04  | 30    | 20    | 10                                      | 0        | 0.0001 |        |                 |              | 165L Ltd Materials Laboratory |
| Deterr<br>Tested in acc                                                                                                                                                     |              | ſ                             | COBBLES |                 |              |                                                                                                    |                                 |                                           | GRAVEL |                                                                                                         | L   | -                            | -    |    | (    | (96) | SAND SAND | sed | 986  | ente  | 2795  | 1     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | SELIVERA |        |        | _               |              | ISL Ltd M                     |
| 10<br>10                                                                                                                                                                    | 8            | passing                       | -       | 100             | 100          | 97                                                                                                 | 90                              | 86                                        |        |                                                                                                         | 72  | 20                           | 66   | 62 | 58   | 53   | 51 5      | 49  | 44   | 39    | 32    | 28    | 25                                      | 21 31    | 21     | 15     | 10              |              | 2                             |
|                                                                                                                                                                             | particle     | size                          | 75      | 63              | 50           | 37.5                                                                                               | 28                              | 20                                        | 14     | 10                                                                                                      | 6.3 | 5                            | 3.35 | 2  | 1.18 | 0.6  | 0.425     | 0.3 | 0.15 | 0.063 | 0.039 | 0.028 | 0.018                                   | 0.010    | 0.007  | 0.005  | 0.002           |              |                               |

| Determination of Particle Size Distribution<br>Tested in accordance with: BS1377:Part2:1990, clause 9.2 & 9.5<br>(note: Sedimentation stage not accredited) | Contract No:        | Contract:                       | COBBLES BH/TP :<br>Sample No. | Sample Type: | Depth (m)                                                                                            | Date Received                   | Description:                                 | GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | 100  | 06 | 80 |   | SAND 60 | OS<br>ed af | 49<br>49 |   |   | SILT/CLAY 10 | 0.0001   |                      |              | IGSL Ltd Materials Laboratory |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------|-------------------------------|--------------|------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|----|----|---|---------|-------------|----------|---|---|--------------|----------|----------------------|--------------|-------------------------------|
| of Particle Size Distu<br>1851377:Part2:1990, clau<br>entation stage not accredited)                                                                        | 21813               | Airton Road                     | BH01<br>AA38091               |              | 4.00                                                                                                 |                                 | Grey clayey                                  | Here Dave 12 wellhare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |      |    |    |   |         |             |          |   |   |              | 0.001    | CLAY                 |              | tory                          |
| ibution<br>se 9.2 & 9.5                                                                                                                                     | Report No. R1025600 | Airton Road , Tallaght , Dublin | Lab. Sample No.               |              | Customer: Barren Mar                                                                                 | 06/06/2019 Date Testing started | Grey clayey, sandy, GRAVEL with many cobbles | then these its we form its of the first station are second in the first of station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89                       | 0.0  |    |    |   |         |             |          |   | 1 |              | 0.01 0.1 | StLT Sieve size (mm) | Approved by: | 19 C                          |
|                                                                                                                                                             | 00                  |                                 | A19/2442                      |              | ony Consulting Engineers, S                                                                          | 07/06/2019                      | ny cobbles                                   | and the for the second se | 81<br>9<br>52<br>6<br>51 | 0.40 |    |    |   |         |             |          | / | V |              |          | CINPS (mu            | d by:        | 4 Erecan                      |
|                                                                                                                                                             |                     |                                 |                               |              | Customer: Barrett Mahony Consulting Engineers, Santiwith House, 52-54 Sandwith Stream Lower, Dubin 2 | 0                               |                                              | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 5                      |      |    |    |   |         |             |          |   |   |              | 10       | GRAVEL               | Date:        | 17/06/19                      |
|                                                                                                                                                             |                     |                                 |                               |              | Street Lower, Dut                                                                                    |                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 540                      |      |    |    | - | /       |             |          |   |   |              | 100      |                      | Page no:     | 1 of 1                        |

| IWAB<br>TANAB                                                                                                                                                              |              |                                 |         |                 |              | Barrett Mahony Consulting Engineers, Sandwith House, 52-54 Sandwith Street Lower, Dublin 2 |                                 |                                               |        |                                                                                              |           | 56.3<br>14 28<br>282<br>563<br>563<br>563<br>563<br>563<br>563<br>563<br>563<br>563<br>563 |      |    | X    |     |              |     |      |       |          |       |            |           | 10 100 |       | CKA VEL                  | Page                          | 1//06/19 1 01 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|---------|-----------------|--------------|--------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|--------|----------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------|------|----|------|-----|--------------|-----|------|-------|----------|-------|------------|-----------|--------|-------|--------------------------|-------------------------------|-----------------|
|                                                                                                                                                                            |              |                                 |         | A19/2448        |              | gineers, Sandwith House                                                                    | 07/06/2019                      |                                               | Ť      |                                                                                              | 8         | 2<br>3'3<br>1'1<br>0'6                                                                     |      |    |      |     | X            |     |      |       |          |       |            |           | 1      |       |                          | Date:                         | 11              |
|                                                                                                                                                                            | R102561      |                                 |         |                 |              | amett Markony Consulting Er                                                                |                                 | ravelly, CLAY                                 |        | ad tay till i fill it a carts                                                                | 5         | 90.0<br>1.0<br>22.0<br>22.0                                                                |      |    |      |     |              |     | 7    |       |          |       |            |           | 0.1    |       | CIVING (TITIT) BYRE BYRE | Approved by:                  | W Tryen         |
| ribution<br>se 9.2 & 9.5                                                                                                                                                   | Report No. R | Airton Road , Taltaght , Dublin |         | Lab. Sample No. |              | Customer: Ba                                                                               | 06/06/2019 Date Testing started | Black slightly sandy, slightly gravelly, CLAY |        | Note Deer 5.4 and Deer k.1 of EU littries.1 (1918) yant into approximating 522 (1918) 4-3231 |           |                                                                                            |      |    |      |     |              |     |      |       |          |       |            |           | 0.01   |       | SALI SIEVE               | <u>&lt;</u> ]                 |                 |
| EPUKI<br>cle Size Dist<br>Part2:1990 , clau<br>ge not accredited)                                                                                                          | 21813        | Airton Road                     | BH02    | AA38096         | 8            | 4.00                                                                                       |                                 | Black slight                                  |        | Nor Deer 14 at Own                                                                           |           |                                                                                            |      |    |      |     |              |     |      |       |          |       | /          |           | 0.001  | ~ ~ ~ | CLA!                     | N                             |                 |
| IESI KEPOKI<br>Determination of Particle Size Distribution<br>Tested in accordance with: BSI377-Part2:1990, clause 9.2 & 9.5<br>(note: Sedimentation stage not accredited) | Contract No: | Contract:                       | BH/TP:  | Sample No.      | Sample Type: | Depth (m)                                                                                  | Date Received                   | Description:                                  |        | Remarks                                                                                      |           |                                                                                            | 1001 | 06 | 80   | 20  | - 09<br>6urs |     |      |       | 30<br>30 | 50    | 10         | 0         | 0.0001 |       |                          | IGSL Ltd Materials Laboratory |                 |
| Dete<br>Tested in a                                                                                                                                                        |              |                                 | CORRIES |                 |              | _                                                                                          |                                 |                                               | GRAVEL |                                                                                              | <u>L.</u> |                                                                                            |      |    |      |     | SAND         |     |      |       |          |       | CULTURE AV | SILIVULAT | _      |       | _                        | IGSL Ltd                      |                 |
|                                                                                                                                                                            | 8            | passing                         | 100     | 100             | 100          | 100                                                                                        | 98                              | 94                                            | 88     | 83                                                                                           | 78        | 76                                                                                         | 72   | 68 | 64   | 58  | 56           | 53  | 47   | 38    | 33       | 30    | 26         | 22        | 18     | 14    | 6                        |                               |                 |
|                                                                                                                                                                            | particle     | Size                            | 52      | 63              | 50           | 37.5                                                                                       | 28                              | 20                                            | 14     | 10                                                                                           | 6.3       | ŝ                                                                                          | 3.35 | 2  | 1.18 | 0.6 | 0.425        | 0.3 | 0.15 | 0.063 | 0.038    | 0.027 | 210.0      | 0.010     | 0.007  | 0.005 | 0.002                    |                               |                 |

|                                                                                                                                                            | particle % %                                          | 100     | 00 6                     | 88                                                                                                 | 62                              | 76                                   | 22      | 63                                                                                                      | _                                                    | 3.35 61 | 58   | 55 | 0.6 51             | 0.425 49 | 47 | 0.15 42 | 0.063 35 | _    | _ | 0.018 25 | 0.011 21  | 0.008 17 | 0.005 13 | 0.002 7                |                  |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------|--------------------------|----------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|---------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------|------|----|--------------------|----------|----|---------|----------|------|---|----------|-----------|----------|----------|------------------------|------------------|----------------------------|
| Der                                                                                                                                                        |                                                       | COBBLES |                          |                                                                                                    |                                 |                                      | GRAVEL  |                                                                                                         |                                                      |         |      |    | (1, 1, 1, 2, 0, 1) | SAND     |    |         |          |      |   | ALT/C AV | 1977/1720 |          |          |                        | 11 1001          | ופאר דר                    |
| terminati<br>in accordance<br>(note:                                                                                                                       |                                                       |         |                          |                                                                                                    |                                 |                                      |         |                                                                                                         |                                                      | 1001    | - 06 | 80 | 2<br>%)            | δuis     |    |         |          | Perc |   | - 01     | 0         | 1000.0   |          |                        | d Matteria       | u Malelia                  |
| Determination of Particle Size Distribution<br>Tested in accordance with: 851377:Part2:1990, clause 9.2 & 9.5<br>(note: Sedimentation stage not according) | Contract No:<br>Contract:                             | BH/TP:  | Sample No.               | Depth (m)                                                                                          | Date Received                   | Description:                         | Damarke | CUBIIDU                                                                                                 |                                                      |         |      |    |                    |          |    |         |          |      |   |          |           |          |          |                        | and a laboration | וסטר דנת שומנפוומוט במטולט |
| Size Dist<br>rt2:1990, clau<br>not accredited)                                                                                                             | 21813<br>Airton Roa                                   | BH03    | AA117472<br>B            | 5.00                                                                                               | 06/06/20                        | Black slight                         | )       | All One Line Date                                                                                       |                                                      |         |      |    |                    |          |    |         |          |      |   | Y        |           | 0.001    |          | CLAT                   |                  | >                          |
| ribution<br>se 9.2 & 9.5                                                                                                                                   | 21813 Report No. R<br>Airton Road , Tallacht , Dublin |         | AA117472 Lab. Sample No. | Customer:                                                                                          | 06/06/2019 Date Testing started | Black slightly sandy, gravelly, CLAY |         | And Chemical and Chemical State (1971) find 2.5 Million and Antonia Statements (1976) (2021) and (1971) |                                                      |         |      |    |                    |          |    |         |          | /    |   |          |           | 0.01     |          | 2151 21                |                  |                            |
|                                                                                                                                                            | R102562<br>blin                                       |         | No.                      | Barrett Mahony C                                                                                   | a started                       | IJy, CLAY                            |         | success to 500 7950 = 2916                                                                              | 890°                                                 |         |      |    |                    |          |    | -1      |          |      |   |          |           | 0.1      |          | S/L. I Sieve size (mm) | Approved by:     | - Alexanor                 |
|                                                                                                                                                            |                                                       |         | A19/2445                 | consulting Engineers, Sa                                                                           | 07/06/2019                      |                                      |         |                                                                                                         | 6.0<br>854,<br>81,1<br>81,1                          |         |      |    |                    |          | 1  |         |          |      |   |          |           | 5        |          | SAND                   |                  |                            |
| IWAB                                                                                                                                                       |                                                       |         |                          | Customer: Barren Mahony Consulting Endineers, Sandwith Houze, 52-54 Sandwith Street Lower: Dukin 2 |                                 |                                      |         |                                                                                                         | 02<br>14<br>01<br>2'9<br>2'3<br>2'32<br>2'32<br>2'32 | 1111111 |      |    |                    |          |    |         |          |      |   |          |           | 10       |          | GRAVEL                 | Date:            | 17/06/19                   |
| 9 N                                                                                                                                                        |                                                       |         |                          | th Street Lower. D                                                                                 |                                 |                                      |         |                                                                                                         | 52<br>05<br>92<br>92<br>92<br>02                     |         |      |    |                    |          |    |         |          |      |   |          |           | 100      |          |                        | Page no:         | 1 of 1                     |



Appendix VI Laboratory

b. Environmental and Chemical



#### The right chernistry to celliver results The right chernistry to celliver results Chernited Lide Newmarket

pri chemistry to deniver results Chemister Lid, Depot Road Newmarket CBB 0AL Tel: 01638 606070 Email: info@chemiset.com

1

#### Final Report

| Report No.:            | 19-19643-1                                            |                  |             |
|------------------------|-------------------------------------------------------|------------------|-------------|
| Initial Date of Issue: | 19-Jun-2019                                           | 1                |             |
| Client                 | IGSL                                                  |                  |             |
| Client Address:        | M7 Business Park<br>Naas<br>County Kildare<br>Ireland |                  |             |
| Contact(s):            | Darren Keogh                                          |                  |             |
| Project                | 21813 Airton Road, Tallaght, Dublin (BMCE)            |                  |             |
| Quotation No.:         |                                                       | Date Received:   | 11-Jun-2019 |
| Order No.:             |                                                       | Date Instructed: | 12-Jun-2019 |
| No. of Samples:        | 28                                                    |                  |             |
| Turnaround (Wkdays):   | 5                                                     | Results Due:     | 18-Jun-2019 |
| Date Approved:         | 18-Jun-2019                                           |                  |             |
| Approved By:           |                                                       |                  |             |

#### Approved By:

Details:

Robert Monk, Technical Manager

# Results - Leachate

## 

t: 25813. Airton Road. Tsilsaht. Dublin (E

| Client: IGSL               |         |      | Cher   | Chemtest Job No.:    | th No.:    | 19-19643          | 19-19643    | 19-19543    | 12-19643    | 19-19643    | 19-19643    | 19-19643    | 19-19643       | 19-15943    |
|----------------------------|---------|------|--------|----------------------|------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|
| Oustation No.:             |         | Ĩ    | Chemte | Chemtest Sample ID.: | le ID.:    | 641051            | 841052      | 841054      | 84'055      | 841056      | 841057      | 841058      | 841059         | 841061      |
| Order No.1                 |         |      | Clier  | Client Sample Ref.   | B Ref.     | 38092             | 117468      | 10886       | 11401       | 114409      | 114415      | AA99927     | AA99928        | AA113509    |
|                            |         |      | Sa     | Sample Location:     | collion    | BH2               | EH3         | BH4         | BHS         | BHB         | 5HB         | TP01        | TP01           | TP02        |
|                            |         |      |        | Sample Type:         | Type:      | SOIL              | SOIL        | SDRL        | SOIL        | SOR         | SOL         | SOIL        | SOIL           | SOIL        |
|                            |         |      |        | Top Depth (m)        | th (m):    | 1.00              | 1.00        | 1,00        | 1,00        | 1.00        | 1,00        | 0.50        | 1.00           | 0.50        |
|                            |         |      | Bat    | Bottom Depth (m):    | 11 (m); 11 | 1.00              | 1,00        | 100         | 1.00        | 1.00        | 1.00        | 0.50        | 1.00           | 0.50        |
|                            |         |      |        | <b>Date Sampled</b>  | mpled.     | 31-May-2019       | 31-May-2019 | 30-May-2019 | 29-May-2019 | 30-May-2019 | 27-May-2019 | 27-May-2019 | 27-May-2019    | 27-May-2019 |
| <b>Determisand</b>         | Accred. | SOP  | Type   | Units                | LOD        | and the second of | internal in | - areas     | A MAN       | 1           | 10 min 11   | 1           | Contraction of |             |
| Ammonium                   | 2       | 1220 | 101    | Nom                  | 0/080      | 0.36              | 0.34        | 0.079       | 0.11        | 0.16        | 0.19        | 0.10        | 0.12           | 0.12        |
| Anmonium                   | z       | 1220 | 10:1   | maka                 | 0.10       | 3.6               | 2.4         | 0.79        | 11          | 9.6         | 1.9         | 1.0         | 1.2            | 1,2         |
| Soron (Dissolved)          | D       | 1450 | 10:1   | 1000                 | 20         | +20               | <20         | <20         | <20         | < 20        | < 20        | < 20        | < 20           | < 20        |
| <b>Barran</b> (Disscrived) | 5       | 1450 | 10:1   | marka                | 0.20       | < 0.20            | < 0.20      | < 0.20      | < 0,20      | < 0.20      | < 0.20      | < 0.20      | < 0.20         | < 0.20      |

÷



#### Results - Leachate

| Client: 105L      | -       |      | Ches         | Chemtest Job No. | th No.     | 10-10040    | 19-19843    | 19-19643    | 49-18943    | 19-19/143        | 19-19643                                                                                                        | 19-19043    | 19-19941    | 19-19643                              |
|-------------------|---------|------|--------------|------------------|------------|-------------|-------------|-------------|-------------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------------------------------|
| Quotation No.:    |         |      | Chamtost San | st Samp          | The ID.T   | 841062      | 841063      | 841064      | 841065      | 841068           | 841067                                                                                                          | 841059      | 841070      | 841071                                |
| Order No.:        |         |      | Clien        | Client Sample    | The Ref.   |             | AAB9943     | AA96944     | AABBAE      | AA99938          | AA88939                                                                                                         | AA113513    | AA113514    | AA113516                              |
|                   |         |      | Sa           | Sample Lot       | ocation:   | 20c41       | TP03        | ED41        | TP03        | 1041             | TPOH                                                                                                            | TP05        | 1P05        | BOHI                                  |
|                   |         |      |              | Sample 1         | Type:      | 1           | SOIL        | SOIL        | SOIL        | SOIL             | SOIL                                                                                                            | SOIL        | SOIL        | SOIL                                  |
|                   |         |      |              | Fop Dept         | Depth (m): | 2.00        | 0.50        | 1.8         | 200         | 090              | 1,00                                                                                                            | 0'50        | 1.00        | 0.50                                  |
|                   |         |      | Both         | Bottom Depth (m) | (m):       | 2.00        | 0:50        | 1.00        | 200         | 0.50             | 1,00                                                                                                            | 0.50        | 1.00        | 0.60                                  |
|                   |         |      |              | Date: Sar        | mpled      | 24-May-2019 | 24-May-2019 | 24-May-2019 | 24-May-2019 | 24-May-2019      | 24-May-2019                                                                                                     | 27-May-2019 | 27-May-2019 | 27-May-2019                           |
| Determinand       | Accred. | SOP  | Type         | Units            | LOD        |             |             |             |             | the state of the | The second se |             | Harrison H  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Ammonium          | n       | 1220 | 10:1         | hgm              | 0.050      | 0.12        | 0.13        | 24.0        | 0.097       | 0.12             | 0.17                                                                                                            | 0.18        | 0.13        | 0.16                                  |
| Ammonium          | N       | 1220 | 10.1         | maika            | 0.10       | 12          | 1.3         | 1.7         | 280         | 1.2              | 1.7                                                                                                             | 18          | 1.3         | 1.6                                   |
| Boron (Cissolved) | n       | 1450 | 10:1         | hgit             | 20         | < 20        | +20         | *20         | 82×         | < 20             | < 20                                                                                                            | < 20        | < 20        | < 20                                  |
| Boron (Dissolved) | -       | 1450 | 10-1         | maña             | 0.20       | < 0.20      | < 0.20      | < 0.20      | < 0.20      | < 0.20           | < 0.20                                                                                                          | < 0.20      | - < 0.20    | < 0.20                                |

Page 3 of 46



#### Results - Leachate

(BMCE) det Dubu Project, 21813 Airton Road, Talla

| Client: IGSL      |         |      | Che          | Cheminst Job No.   | D. No.:   | 19-19643    | 19-19043     | 19-19643    | 19-19645    | 19-19643    | 12-120333             | 19-19643     |
|-------------------|---------|------|--------------|--------------------|-----------|-------------|--------------|-------------|-------------|-------------|-----------------------|--------------|
| Quotation No.:    |         |      | Chemtest Sar | at Samp            | mpie ID.: | 841072      | 841073       | 841074      | 84:075      | 841076      | 841077                | 841078       |
| Order Nc.         |         |      | 0jo          | Client Sample Ref. | a Ref.;   | AA113518    | AA99835      | A499936     | A469931     | AA98932     | AA99927               | AA99929      |
|                   |         |      | Ø            | Service Location   | cetion:   | TPOG        | 10d1         | TP07        | TPOB        | 11908       | 50d1                  | TPOS         |
|                   |         |      |              | Sample Type        | 5 Type:   | SOIL        | SOIL         | SDAL        | SOIL        | SOIL        | SOIL                  | SOIL         |
|                   |         |      |              | Top Depth          | (H) (H);  | 2.00        | C50          | 1.00        | 020         | 1.00        | 0,50                  | 2,00         |
|                   |         |      | Bo           | Bottom Depth       | th (m):   | 2.00        | 0.50         | 1.00        | 0.50        | 1.00        | 0.50                  | 2.00         |
|                   |         |      |              | Date Sampled       | mplad:    | 24-May-2019 | 24-May-2019. | 26-May-2019 | 24-Mey-2019 | 24-May-2019 | 24-May-2019           | 24-May-2019  |
| Determinant       | Accred. | SOP  | Type         | Units              | 100       | i marine i  | the second   | Ser Marine  | 1 where a   | Harris H    | and the second second | and a second |
| Ammonium          | 5       | 1220 | 10:1         | 1)Out              | 0.050     | 0.22        | C.17         | 0.17        | 0.16        | 0.12        | 0.12                  | 0,12         |
| Ammoniam          | z       | 1220 | 10:1         | marka              | 0.10      | 22          | 173          | 1.7         | 1.6         | 1.2         | 10                    | 1.2          |
| Boron (Disadved)  | ,       | 1450 | 10:1         | 10rt               | 8         | < 20        | + 20         | < 20        | <20         | < 20        | < 20                  | < 20         |
| Boron (Dissolved) | n       | 1450 | 10:1         | maya               | 0.20      | < 0.20      | < 0.20       | < 0.20      | < 0.20      | < 0.20      | < 0.20                | < 0.20       |

Page 4 of 46

ł.

|    | BMC     |
|----|---------|
| -  | ublin   |
| ŝ  | ver res |
| Ť  | to cat  |
| L  | ATTENT  |
| e  | Airlo   |
| 0  | 2181    |
| E. | Project |

#### Results - Soil

|   | NUCEN | TWO WITH |
|---|-------|----------|
|   | ्ष    | 1        |
| 1 | 벽     |          |
| ١ | 85    | 1        |
| ) | 23    | 100      |
| 1 | 108   | 9        |
|   | 8     |          |
| : |       | 8        |
| ) | chen  | NUM IN   |
| • | 5     | 1        |
| Í | 91    |          |
|   | -     | 1        |

|     | 1-61              | R.A.                 |
|-----|-------------------|----------------------|
|     | 19-19643          | 841062               |
|     | 19-10643          | RANGE                |
| E E | Chamtest Job No.: | Chambast Samula ID - |

| Client IGSL                         |         | to   | tentest       | Chamtest Job No.     | 19-10643      | 19-19043    | 19-19643    | 19-19643     | 19-19643      | 19-19643-               | 19-19643                | 15-19643                |
|-------------------------------------|---------|------|---------------|----------------------|---------------|-------------|-------------|--------------|---------------|-------------------------|-------------------------|-------------------------|
| Quotation No.:                      |         | Chem | thest Sa      | Chembest Sample ID.: | 841051        | 841052      | 841053      | 841054       | 841055        | 841056                  | 841057                  | 841058                  |
| Order No :                          |         | 0    | Sent Sar      | Clent Sample Rof     | 38062         | 117468      | 117470      | 10696        | 11401         | 114409                  | 114415                  | AA88827                 |
|                                     |         |      | Sample        | Sample Location      | EH2           | 843         | 8H3         | 8944         | BHB           | BHB                     | 24部                     | 10dl                    |
|                                     |         |      | Ser           | Sample Type          | L             | SOIL        | SOIL        | SOIL         | SOIL          | SOIL                    | SOIL                    | SOIL                    |
|                                     |         |      | Top1          | (m) ritepth (m);     | 1.00          | 1,00        | 3,00        | 1.00         | 1.00          | 1.00                    | 1.00                    | 0.50                    |
|                                     |         | 100  | Jottom L      | Bottom Depth (m)     |               | 1,00        | 3.00        | 1.00         | 1.00          | 1.00                    | 1.00                    | 0.50                    |
|                                     |         |      | Date          | Date Sampled         | 1 31-May-2019 | 31-May-2019 | 31-May-2019 | 30-May-2019  | 29-May-2019   | 30-May-2019             | 27-May-2019             | 27-May-2019             |
|                                     |         |      | Asbe          | Asbestos Lab:        | COVENTRY      | COVENTRY    |             | COVENTRY     | COVENTRY      | COVENTRY                | COVENTRY                | COVENTRY                |
| Determinand                         | Accred. | SOP  | P Units       | 1007 S               |               |             |             |              | 1111          |                         |                         |                         |
| ACM Type                            | 2       | 2192 | 27            | NN                   |               |             |             |              |               |                         | Treeds 1                |                         |
| Asbestos Identification             | 9       | 2392 | *             | 0001                 | No Asbestos   | No Ashestos |             | No Astrestos | No Asbestos   | No Asbestos<br>Detected | No Asbestos<br>Detertad | No Asbestos<br>Deterted |
| ACM Detection Stans                 | =       | 2400 | 2             | NIA                  | +             | nanouan     |             | mannan       | - manual man  | -                       | -                       | -                       |
| Molsture                            | 2       | 2030 | 100           | F                    | 12            | 10          | 8.7         | 12           | 5.8           | 8.6                     | #                       | 15                      |
| DH                                  | -       | 2010 |               | t                    |               |             | 8.6         |              |               |                         |                         |                         |
| Boron (Hot Weter Soluble)           |         | 2120 | 20 mg/kg      | -                    | < 0.40        | < 0.40      |             | < 0.40       | < 0.40        | + 0.40                  | × 0.40                  | < 0.40                  |
| Sulphate (2:1 Water Solutie) as SO4 | -       | 2120 | 10 00         | 0100                 | 6             | North State | 0.078       |              | Sector Sector |                         |                         |                         |
| Sulphur (Elemental)                 | -       | 2180 | 30 mg/kg      | 1.0                  | 1.3           | 2.0         |             | 1.6          | 1,2           | 1.4                     | 23                      | 1.7                     |
| Cyanide (Total)                     | 0       | 2300 | 00 mg/kg      | 050 0.00             | < 0.50        | < 0.50      |             | < 0.50       | < 0.50        | + 0.50                  | [B] < 0.50              | [B] < 0.50              |
| Subhide (Easily Liberatable)        | 2       | 2325 |               | NO 0.50              | 2.7           | 16          |             | 2.4          | 13            | 14                      | 13                      | 14                      |
| Subhate (Acid Soluble)              | 9       | 2430 | 3 00          | 0.010                | < 0.010       | < 0.010     |             | 0.013        | 0.020         | 0.026                   | 01010                   | 0.029                   |
| Arsenic                             | 0       | 2450 | 50 mp/sg      | 0.1 10               | 19            | 30          |             | 22           | 2             | 18                      | 2                       | 23                      |
| Bartum                              | -       | 2450 |               | 01 10                | 42            | 68          |             | 42           | 44            | 62                      | 37                      | 48                      |
| Cedmium                             | •       | 2450 |               | 010 010              | L             | 2.5         |             | 1,8          | 21            | 2.4                     | 2.4                     | 1.8                     |
| Chromium                            | -       | 2450 | 50 mg/ug      | 1.0                  | 12            | 13          |             | 13           | 뫄             | 16                      | 13                      | 13                      |
| Molybdenum                          | -       | 2450 | 50 mg/kg      | 60 2.0               | L             | 4.0         |             | 38           | 3,1           | 3.1                     | 2.8                     | 3.2                     |
| Antimony                            | N       | 2450 |               | 0.2 0                | <2.0          | < 2.6       |             | < 2,0        | <2.0          | < 2.0                   | s.2.0                   | < 2.0                   |
| Copper                              | •       | 2450 | 50 mg/ug      | 090 0                |               | 名           |             | 8            | 12            | 27                      | 19                      | 24                      |
| Marcury                             | -       | 2450 | SO mights     | 01:10                | < 0,10        | < 0.10      |             | < 0,10       | 0.33          | < 0.10                  | < 0.10                  | < 0.10                  |
| Nicket                              | >       | 2450 | 50 mg/kg      | 0.50                 | L             | 52          |             | 4            | 48            | 51                      | 37                      | 44                      |
| Lead                                | 0       | 2450 | EU/Em 05      | 09'0 50              | 13            | 16          |             | 18.          | 21            | 23                      | 13                      | 15                      |
| Selenium                            | -       | 2450 | SO marka      | 0.20                 |               | 0.45        |             | 680          | 0.40          | < 0.20                  | 0.21                    | < 0.20                  |
| Zinc                                | >       | 2460 | S0 ma/kg      | 02.0 0.50            | 19            | 68          |             | 21           | 72            | 74                      | 24                      | 8                       |
| Chromium (Trivalent)                | z       | 2490 |               | 0.1 1.0              | 12            | 13          |             | 13           | 15            | 16                      | 13                      | 13                      |
| Chromium (Hexavalent)               | z       | 2490 | police of     | 08.0 0.00            | - 0'£0        | < 0.60      |             | < 0.50       | < 0.50        | < 0.60                  | < 0.50                  | × 0.50                  |
| Total Organic Carbon                | >       | 2625 | 1 90          | 0:20                 | 0.40          | 0.40        |             | 0.33         | 0.59          | 0.44                    | 0.33                    | 0.29                    |
| Mineral Oil                         | z       | 2670 | 70 maño       | 10                   | < 10          | < 10        |             | < 10<br><    | < 10          | < 10                    | < 10                    | < 10                    |
| Alphatic TPH >C5-C6                 | z       | 268  | 2880 mp/kg    | 01 00                | <1.0          | < 1.0       |             | <10          | < 1,0         | < 1.0                   | [E] < 1.0               | [B] < 1.0               |
| Alphatic TPH >C6-C6                 | N       | 2680 | 30 ma/kg      | 0.1 0                | <1.0<br><     | < 1.0       |             | < 1.0        | < 1.0         | <-1.0                   | (E) < 1.0               | (日)<1.0                 |
| Apphatic TPH >C8-C10                | >       | 2680 | palam 08      | 1.0                  |               | <1.0        |             | < 1,0        | <1.0          | < 1,0                   | [6] < 1.0               | 回<1.0                   |
| Alichatic TPH >C10-C12              | 5       | 2680 | an maker      | 01 10                | <1.0          | < 1.0       |             | < 1.0        | < 1.0         | < 1.0                   | [B] < 1.0               | (E) < 1.0               |
| Aichate TPH >C12-C16                | 2       | 2680 |               | 01 1.0               | L             | < 1.0       |             | <1.0         | < 1.0         | < 1.0                   | [8] < 3.0               | [E] < 1.0               |
| Alchatic TPH >C18-C21               | 0       | 2680 | 50 malva      | 0 1.0                | <1.0          | <10<br><    |             | <10<br>1     | < 1,0         | < 1,0                   | [B] < 1.0               | 国<1.0                   |
| Alphatic TPH »C21-C35               | 0       | 266  | 2680 me/kg    | 0.1 00               | C1 >          | <1.0        |             | <1.0         | < 1.0         | <1.0                    | [E] < 1.0               | (E) < 1.0               |
| Alphatic TPH >C35-C44               | z       | 2680 | pollom 08     | 01 1.0               | <10           | < 1.0       |             | 0'£>         | < 1.0         | < 1.0                   | [B] < 1.0               | [E] < 1.0               |
| Total Alightatic Hydrocarbons       | x       | 385  | 2680 mg/kg    | 0 20                 | < 5.0         | < 5.0       |             | < 5,0        | <5.0          | < 5.0                   | 18 < 5.0                | [E] < 5.0               |
|                                     |         |      | Sector Sector |                      |               |             |             |              |               |                         |                         |                         |

Page 5 of 46

## 

Results - Soil

| Client: 16SL                |          | Che     | Chamitest Job No.;    | 101   | 19-19943    | 19-19643    | 19-19643    | 19-19643    | 19-19643                                | 19-19643    | 15-19643    | 18-19643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|----------|---------|-----------------------|-------|-------------|-------------|-------------|-------------|-----------------------------------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outstation No.              |          | Chemte  | Chemtest Sample ID :: | :0    | 841061      | 841052      | 841053      | 841054      | 841055                                  | 841058      | 841057      | 841058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Order No :                  |          | Che     | Client Sample Ref     | et -  | 38092       | 117468      | 117470      | 10696       | 11401                                   | 114409      | 114415      | AA99927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |          | in lan  | Sample Location:      | 100   | BH2         | 8H3         | BHS         | 8H4         | BHB                                     | 848         | 2148        | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |          |         | Sample Type:          | -per: | SOL         | SOL         | SOIL        | SOIL        | SOIL                                    | SOIL.       | SOIL        | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |          |         | Top Depth (m):        | il mi | 1,00        | 1.00        | 3.00        | 1.00        | 1,00                                    | 1,00        | 1.00        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |          | Bo      | Bottom Depth (m)      | ÷     | 1.00        | 1:00        |             | 1,00        | 1.00                                    | 1.00        | 1,00        | 0:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |          |         | Date Sampled:         | _     | 31-May-2019 | 31-May-2019 | 31-May-2019 | 30-May-2019 | 29-May-2019                             | 30-May-2019 | 27-May-2019 | 27-May-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |          |         | Asbestos Lab:         |       | COVENTRY    | COVENTRY    |             | COVENTRY    | COVENTRY                                | COVENTRY    | COVENTRY    | COVENTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Determitand                 | Accred.  | SOF     | Units                 | TOD   |             |             |             |             | 100000000000000000000000000000000000000 |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aromatic TPH >C5-C7         | z        | 2880    | Bayduu                | 1.0   | <10         | <1.0        |             | < 1.0       | <1.0                                    | < 1.0       | 1回<1.0      | (引 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Arometic TPH >C7-C8         | z        | 2680    | make                  | 1.0   | < 10        | <1.0        |             | < 1.0       | <1.0                                    | < 1.0       | [6] < 1.0   | (日<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anomatic TPH >C8-C10        | 0        | 2680    | BMgm                  | 1.0   | <1.0        | <1.0        |             | <1.0        | < 1.0                                   | <1.0        | [E] < 1.0   | (1)<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aromatic TPH >C10-C12       | ji<br>ji | 2680    | DWgm                  | 1.0   | <1.0        | <1.0        |             | <1.0        | <1.0                                    | <1.0        | [1] < 1.0   | (日 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Arometik TPH >C12-C16       | 2        | 2680    | make                  | 1.0   | <10         | < 1.0       |             | < 1.0       | <1.0                                    | < 5.0       | [B] < 1.0   | [四]<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aromatic TPH >C16-C21       | 2        | 2080    | ma/kg                 | 1.0   | <10         | <1.0        |             | < 1,0       | <1.0                                    | <1.0        | (B) < 1.0   | (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aronatic TPH >C21-C35       | 5        | 2680    | ma/kg                 | 1.0   | < 1.0       | <1.0        |             | <1.0        | < 1.0                                   | <1.0        | [6] < 1.0   | E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Aromatic TPH >035-044       | z        | 2680    | ma/kg                 | 1.0   | <10         | < 1,0       |             | < 1.0       | < 1.0                                   | <1.0        | [6] < 1.0   | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Total Aromatic Hydrocarbans | 2        | 2680    | 10%em                 | 50    | < 5.0       | < 6.0       |             | < 5.0       | < 5.0                                   | < 5.0       | (1) < 5.0   | [E] < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Total Pergeum Hydrocarbons  | z        | 2680    | ma/kg                 | 10.0  | < 10        | < 10        |             | < 10        | < 10                                    | < 10        | [B] < 10    | [B] < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Benzene                     | 2        | 2760    | 519/00                | 1.0   | < 1.0       | < 1.0       |             | < 1.0       | <1.0                                    | <1.0        | 101 > 10    | 国<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Toluene                     | 5        | 2760    | LIN/60                | 1.0   | < 1.0       | < 1.0       |             | < 1.0       | < 1.0                                   | < 1.0       | (日 < 1.0    | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ethylbercere                | 2        | 2760    | 10/00                 | 1.0   | < 10        | <1.0        |             | < 1.0       | <1.0                                    | <1.0        | 18 < 1.0    | E <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| m & p-Xylane                | 9        | 2760    | 210/901               | 1.0   | < 10        | < 1.0       |             | < 1.0       | ×1.0                                    | <1.0        | 0.1 > 18]   | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| o-Xytene                    | 5        | 2760    | palkgu                | 1.0   | < 1.0       | <1,D        |             | < 1.0       | < 1.0                                   | < 1.0       | (B] < 1.0   | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Methyl Tert-Bulyl Ether     | 2        | 2760    | 19/kg                 | 1.0   | <1.0        | <1.0        |             | < 1.0       | < 1.0                                   | <1.0        | [8] < 1.0   | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Naphthaene                  | 3        | 2800    | mplikg                | 0.10  | < 0.10      | < 0.10      |             | < 0.10      | < 0.10                                  | < 0.10      | < 0.10      | × 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Approaphthylene             | 2        | 2800    | mg/kgr                | 0.10  | < 0.10      | <0.0        |             | < 0.10      | < 0.10                                  | < 0.10      | < 0,10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Acenaphthene                | D        | 2600    | marka                 | 0,10  | < 0.10      | < 0.10      | -           | < 0,10      | < 0.10                                  | < 0,10      | <0.10       | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fluorene                    | 3        | 2800    | 2800 mg/kg 0.1        | 0.10  | < 0.10      | < 0, 0 >    |             | < 0.10      | < 0.10                                  | × 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Phanantrane                 | 0        | 2800    | mg/kg                 | 0.10  | < 0.10      | < 0,10      |             | < 0.10      | < 0.10                                  | < 0.50      | < 0,10      | < 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Anthracene                  | n        | 2600    | marka                 | 0.10  | < 0.10      | < 0.10      |             | < 0.10      | < 0.10                                  | < 0.10      | c.0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Fluoranthene                | 0        | 2800    | mg/kg                 | 0.10  | < 0.10      | < 0(:)0 >   |             | < 0.10      | < 0.10                                  | < 0.10      | < 0,10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pyrane                      | 0        | 2800    | _                     | 0.10  | < 0,10      | < 0.10      |             | < 0.10      | < 0,10                                  | < 0.10      | < 0.30      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzulajanthragene          | n        | 2500    | 2800 mg/kg 0.1        | 0.10  | < 0.10      | < 0, 10     |             | < 0,10      | < 0.10                                  | < 0.10      | c 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chrysene                    | 0        | 2800    | marka                 | 0.10  | < 0.10      | < 0.10      |             | < 0.10      | < 0.10                                  | < 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzo(b)flucrenthene        | n        | 2800    | mg/kg                 | 0.10  | < 0.10      | < 0.10      |             | < 0.10      | < 0.10                                  | < 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzo(k)suoranthene         | n        | 2800    | mg/kg                 | 0.10  | < 0.10      | < 0.30      |             | < 0.10      | < 0.10                                  | < 0.10      | c.0.10      | < 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzo(a)pyrene              | 2        | 2600    | mg/kg                 | 0.10  | < 0.10      | < 0.10      |             | < 0.10      | < 0.10                                  | × 0,10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Indeno(1,2,3-c,d)Pyrene     | 0        | 2800    | mg/kg                 | 0.10  | < 0.10      | < 0.10      |             | < 0.10      | <0,10 ⇒                                 | < 0,10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dibenz(s,h)Arthracene       | z        | 2800    | mg/kg                 | 0,10  | < 0.10      | < 0.10      |             | < 0,10      | < 0.30                                  | < 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzolg.h.ipen/iene         | 2        | 2800    | marka                 | 0.10  | < 0.10      | < 0.10      |             | < 0.10      | < 0.10                                  | < 0.10      | <.0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cortonecte                  | z        | 2800    | mg/kg                 | 0.10  | < 0.10      | < 0.10      |             | < 0.30      | < 0.10                                  | < 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Of 17 PAH's           | z        | 2800    | mg/kg                 | 2.0   | <20         | < 2.0       |             | < 2.0       | < 2.0                                   | <2.0        | < 2.0       | < 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PCB 28                      | 0        | 2815    | mg/kg 0.010           | 010   | < 0.010     | < 0.010     |             | < 0,010     | < 0.010                                 | < 0.010     | < 0.010     | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PCB 52                      | 2        | 2815    | mg/kg 0.010           | 010   | < 0.010     | < 0.010     |             | < 0.010     | < 0.010                                 | < 0.010     | + 0.010     | + 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Public State and            |          | ALC: NO |                       |       |             |             |             |             |                                         |             |             | and the second se |

Chemtest Barrier Annual Annual Annual

Results - Soil

| Client: 155L             |         | Chei   | Chembest Job No.     | ob No.!         | 19-19143    | 19-19643     | 19-19643    | 19-19843    | 19-19643    | 19-19643    | 15-19643                                                                                                        | 19-19643    |  |
|--------------------------|---------|--------|----------------------|-----------------|-------------|--------------|-------------|-------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------|-------------|--|
| Quotetion No.            |         | Chamta | Chemiest Sample 10.: | ple 10.:        | 841051      | 841052       | 841053      | 841054      | 841055      | 841058      | 841057                                                                                                          | 841058      |  |
| Order No.:               |         | Clie   | Client Sample Ref.   | ole Ref.        | 38092       | 117468       | 117470      | 10696       | 11401       | 114409      | 114415                                                                                                          | AA99927     |  |
|                          |         | Ø      | smple L              | Sample Location | BHC         | 8943         | 848         | BH4         | BHB         | の日本         | BH7                                                                                                             | 1041        |  |
|                          |         |        | Samp                 | Sample Type:    | SOL         | SOL          | SOIL        | SOIL        | SOIL        | SOIL        | BOIL                                                                                                            | SOIL        |  |
|                          |         |        | Top De               | Top Depth (m):  | 1:00        | 1.00         | 3.00        | 1.00        | 1.00        | 1.00        | 1.00                                                                                                            | 0.60        |  |
|                          |         | Bal    | Battors Depth (m)    | pth (m):        | 1.00        | -1:00        | 3.00        | 1,00        | 1.00        | 1.00        | 1.00                                                                                                            | 0,50        |  |
|                          |         |        | Dale S               | Dale Sampled    | 31-Mey-2019 | -31-May-2019 | 31-May-2019 | 30-May-2019 | 29-May-2019 | 30-May-2019 | 27-May-2019                                                                                                     | 27-May-201B |  |
|                          |         |        | Asbes                | Athestos Lab:   | COVENTRY    | COVENTRY     |             | COVENTRY    | COVENTRY    | COVENTRY    | COVENTRY                                                                                                        | COVENTRY    |  |
| Determinand              | Accred. | SOP    | Units                | LOD             |             |              |             |             |             |             | The second se |             |  |
| PCB 116                  |         | 2815   | -                    | 010 0,010       | < 0.010     | < 0.010      |             | < 0.010     | < 0.010     | < 0,010     | < 0.010                                                                                                         | <0.010      |  |
| PCB 150                  | 3       | 2815   |                      | mp/tig 0.010    | < 0.010     | < 0.010      |             | < 0.010     | < 0.010     | < 0.010     | < 0.010                                                                                                         | <0.010      |  |
| PCB 136                  | 5       | 2815   |                      | mp/kg 0.010     | < 0.010     | < 0.010      |             | < 0.010     | < 0.010 ×   | < 0.010     | < 0.010                                                                                                         | < 0.010     |  |
| PCB 180                  | -       | 2815   |                      | mp/kg 0.010     | × 0.010     | < 0.010      |             | < 0.010     | < 0.010     | < 0,010     | <0.010                                                                                                          | <0.010      |  |
| Tolsi PCBs (7 Congeners) | z       | 2815   | Bytu                 | 0.10            | < 0,10      | < 0.10       |             | < 0,10      | < 0,10      | < 0,10      | < 0,10                                                                                                          | × 0.10      |  |
| Total Phyrods            | 2       | 2920   | -                    | mp/kg 0.30      | < 0.30      | < 0.30       |             | < 0.30      | < 0.30      | < 0.30      | < 0.30                                                                                                          | × 0.30      |  |

Page 7 of 46

## Chemtest Protect: 21813 Afrion Read. Tailaght, Dublin

Results - Soil

|                                     |         | COMPANY OF THE OWNER |                     | Contraction of the local division of the loc |                         | the state of the s |                         | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1000 m 100              | 10100101                | 1000000                 |                         |
|-------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| CHENTER RUSH                        |         | AUN                                                                                                             | LINUWSE             | CUBINIESE JOD KO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 19-13042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18-18043                | THE PARTY AND                           | THORNEY A               | 10110010                | 0100000                 | 0100010                 |
| Ouotation No.:                      |         | Chemte                                                                                                          | est Sam             | Chemtest Sample ID.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 841000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 841061                  | 841062                                  | 841063                  | 841054                  | 841060                  | 841066                  |
| Order No.:                          |         | Gen                                                                                                             | Client Sample Ref   | otie Ref.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AA99528                 | AA999209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AA113509                |                                         | AA59943                 | AA99944                 | AA99945                 | AA999938                |
|                                     |         | ŝ                                                                                                               | ampie L             | Sample Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10d1                    | TPOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1P002                   | TPO2                                    | 1P03                    | TP03                    | TP03                    | TP04                    |
|                                     |         |                                                                                                                 | Samp                | Sample Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIL                    | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL                    | SOIL                                    | SOIL                    | BOIL                    | SOIL                    | SOIL                    |
|                                     |         |                                                                                                                 | Top De              | Top Depth (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                    | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                    | 2.00                                    | 0.50                    | 1.00                    | 2.00                    | 0.50                    |
|                                     |         | Bot                                                                                                             | floon De            | Bottom Depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0:50                    | 2.00                                    | 0.50                    | 1.00                    | 2,00                    | 0.50                    |
|                                     |         |                                                                                                                 | Disks 5             | Dele Sempled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.4                    | 27-May-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27-May-2019             | 24-May-2019                             | 24-May-2019             | 24-May-2019             | 24-May-2019             | 24-May-2019             |
|                                     |         |                                                                                                                 | AGDES               | Asbestos Lab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COVENTRY                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COVENTRY                | COVENTRY                                | COVENTRY                | COVENTRY                | COVENTRY                | COVENTRY                |
| Beterminand                         | Accred. | SOP                                                                                                             | Units               | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                         |                         |                         |                         |
| VCM Type                            | 9       | 2192                                                                                                            |                     | N/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1.1                   |                                         |                         |                         |                         |                         |
| utbestos Identification             | 3       | 2192                                                                                                            | *                   | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No Asbestos<br>Detected |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No Ashestos<br>Detected | No Asbestos<br>Delected                 | No Asbestos<br>Detected | No Asbestos<br>Detected | No Asbestos<br>Detected | No Asbestos<br>Detected |
| ACM Detection Stage                 | -       | 2192                                                                                                            |                     | NIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                         |                         |                         |                         |                         |
| Aciahure                            | N       | 2030                                                                                                            | 3 <sup>4</sup>      | 0:020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.2                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.7                     | 10                                      | 10                      | 17                      | 12                      | - 18                    |
| 2.                                  | =       | 2010                                                                                                            |                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                                         |                         |                         |                         |                         |
| Boron (Hot Water Soluble)           | -       | 2120                                                                                                            | mo/sq               | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.40                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.40                  | < 0,40                                  | < 0.40                  | × 0.40                  | 4 0,40                  | < 0.40                  |
| Sulphate (2:1 Water Soluhle) as SO4 | 0       | 2120                                                                                                            |                     | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | <0.0.0 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                                         |                         |                         | Contraction of the      |                         |
| Sulphur (Elemental)                 | 9       | 2180                                                                                                            | mpling              | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                     | 1.4                                     | 1,2                     | 1.4                     | 2.8                     | 1.2                     |
| Cymide (Total)                      | 2       | 2300                                                                                                            | molea               | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 0.50              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 0.50              | [B] < 0.50                              | 181 < 0.50              | [B] < 0.60              | [B] < 0.50              | [B]< 0.50               |
| Sutphide (Easily Liberate/le)       | 2       | 2325                                                                                                            | m0%0                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                      | 16                                      | 16                      | 27                      | 15                      | 0.93                    |
| Sulphate (Acid Soluble)             | 9       | 2430                                                                                                            | 2                   | 0:010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.010                 | × 0.010                                 | < 0.010                 | 0,045                   | < 0.010                 | 0.029                   |
| rsenic                              | 2       | 2450                                                                                                            | mp/kg               | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                      | 28                                      | 24                      | 20                      | 23                      | 14                      |
| Serium                              | 5       | 2450                                                                                                            | mp9kg               | 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88                      | 81                                      | 37                      | 16                      | 41                      | 2/2                     |
| Cadmium                             | 0       | 2450                                                                                                            | 2450 mp/kg          | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                     | 1.9                                     | 2.9                     | 4.7                     | 1.9                     | 2.1                     |
| Chromium                            | -       | 2450                                                                                                            | 2450 mp/kg          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                      | 12                                      | 13                      | 26                      | 13                      | 23                      |
| Aoybdenum                           | 0       | 2450                                                                                                            | mo/leg              | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6                     | 3.7                                     | 3.6                     | 4.9                     | 3.6                     | 2,3                     |
| Antimony                            | x       | 2450                                                                                                            | 2450 mg/kg          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <2.0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <20                     | < 2.0                                   | < 2.0                   | 2.5                     | ¢ 2.0                   | <2.0                    |
| Copper                              | 0       | 2450                                                                                                            | mg/kg               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                      | 31                                      | 52                      | 45                      | 23                      | 27                      |
| Asiciary                            | 2       | 2450                                                                                                            | m0 <sup>1kg</sup>   | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.10                  | < 0.10                                  | < 0.10                  | 0.10                    | × 0.10                  | < 0.10                  |
| fictual                             | 0       | 2450                                                                                                            | 2450 mg/kg          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43                      | 48                                      | 44                      | 100                     | 46                      | 50                      |
| ead                                 | 0       | 2450                                                                                                            | mg/kg               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16<br>1                 | 14                                      | 4                       | 27                      | -18                     | 8                       |
| Selenium                            | 2       | 2450                                                                                                            | 610 <sup>1</sup> kg | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.42                    | < 0.20                                  | 0.30                    | 0.94                    | 2.4                     | 0.51                    |
| Sinc                                | 0       | 2450                                                                                                            | 2450 mg/kg          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                      | 70                                      | 62                      | 120                     | 62                      | 100                     |
| Chromium (Trivalent)                | x       | 2490                                                                                                            | 2490 mg/kg          | 1.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                      | 12                                      | 13                      | 26                      | m#                      | 53                      |
| Chromitum (Haxavalent)              | z       | 2490                                                                                                            | 2490 mg/kg          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.50                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.50                  | < 0.50                                  | < 0.50                  | < 0.50                  | +0.50                   | < 0.50                  |
| fotal Organic Carbon                | 2       | 2625                                                                                                            | 2                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 620                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34                    | 0.64                                    | 0.33                    | 0,87                    | 0.32                    | 0,65                    |
| Ansraí Oil                          | z       | 2670                                                                                                            | 2670 mg/kg          | 101 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 10                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × 10                    | < 10                                    | < 10                    | <10                     | < 10                    | <10                     |
| Niphatic YPH >C5-C8                 | z       | 2690                                                                                                            | marka               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 1.0               | [B] < 1.0                               | [B] < 1.0               | [8] < 1.0               | E < 1.0                 | 101<10                  |
| Vibbalic TPH >C6-C8                 | z       | 2680                                                                                                            | muha                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [B] < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 1.0               | [B] < 1.0                               | B] < 1.0                | (B) < 1.0               | [E] < 1.0               | 10/1 > (8)              |
| Uphatic TPH >C8-C10                 |         | 2680                                                                                                            |                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [B] < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 1.0               | 16] < 1.0                               | [8] < 1.0               | (田<1.0                  | [E] < 1.0               | [8] < 1.0               |
| Viphatic TPH >C10-C12               | 2       | 2680                                                                                                            | marka               | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [B] < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 1.0               | [8] < 1.0                               | [B] < 1.0               | [B] < 1.0               | 181<1.0                 | 18 < 1.0                |
| Viphalic TPH >C12-C16               |         | 2680                                                                                                            | marka               | 0/1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [B] < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 1.0               | [B] < 1.0                               | [8] < 1.0               | (1) < 1.0               | [E] < 1.0               | [日] < 1.0               |
| Alphatic TPH >C16-C21               |         | 2680                                                                                                            | mg/kg               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (I) < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 1.0               | [6] < 1.0                               | [B] < 1.0               | [8] < 1.0               | [E] < 1.0               | 18] < 1.0               |
| Alphatic TPH >C21-C35               |         | 2680                                                                                                            |                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [B] < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [B] < 1.0               | [8] < 1.0                               | [1] < 1.0               | [8] < 1.0               | [E] < 1.0               | [E] < 1.0               |
| Niphalic TPH >C35-C44               | N       | 2680                                                                                                            | marka               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) < 1.0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B] < 1.0                | [8] < 1.0                               | [B] < 1,0               | [B] < 1.0               | [E] < 1.0               | (日<1.0                  |
| Total Attalentic Lindenensinan      | -11     | CHREE                                                                                                           | 5680 marker         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAK D                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEV DE                  | 181 < 5.0                               | 10-4 F.O                | 181 4 50                | 101 - 100               |                         |

|          | -   |
|----------|-----|
| -        | 의통  |
| in       | 53  |
| a        | 퉒   |
| 2        | 동물  |
| T        | 르   |
| E        | Fon |
| (1)      | 50  |
| <u>۳</u> | 55  |
|          | 5m  |
| ()       | 218 |
| $\sim$   |     |
| 12       | 욁   |
| 2        | 6   |

#### Results - Soil

| Client: I3SL                |         | Che    | Chemtest Job No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 19-16643    | 19-19143    | 18-19843    | 18-19843    | 19-19613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19-19643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18-19943  | 15-19643    |
|-----------------------------|---------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| Quotation No.1              | _       | Chemit | Chemiest Sample ID.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 841059      | 841050      | 641061      | B41062      | 641063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 841064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 841065    | 841066      |
| Order No.1                  |         | Cilo   | Client Sample Rel :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L    | AA999328    | AA99929     | AA113509    |             | A499943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A496944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AA99945   | AAEBB36     |
|                             |         | 05     | Sample Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | one  | 1041        | TPOI        | TPOS        | TP02        | 1P00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1P03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TP03      | TPOM        |
|                             |         |        | Sample Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dec  | SOL         | SOL         | SOI.        | SOIL        | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIL      | SOIL.       |
|                             |         |        | Top Depth (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 글    | 1.00        | 2.00        | 050         | 2.00        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00      | 0.50        |
|                             |         | Bo     | Bottom Depth (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X    | 1.00        | 2.00        | 0.50        | 2.00        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00      | 0.50        |
|                             |         |        | Date Sampled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    | 27-Mey-2019 | 27-May-2019 | 27-May-2019 | 24-May-2019 | 24-May-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24-May-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -         | 24-May-2019 |
|                             |         |        | Asbestos Lab:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | COVENTRY    |             | COVENTRY    | COVENTRY    | COVENTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COVENTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COVENTRY  | -           |
| Determinand                 | Accred. | 30P    | Units LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00   |             |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |             |
| Anomatic TPH >C5-C7         | z       | 2680   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,0  | Bj < 1.0    |             | [B] < 1,0   | 181 < 1,0   | (B) < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) < 1.0 | [E] < 1.0   |
| Nomatic TPH >C7-C8          | z       | 2680   | marka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | B]<1.0      |             | [B] < (.0   | [B] < 1.0   | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0 | [E] < 1.0   |
| Anomatic TPH >C8-C10        | n       | 2680   | ma/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0  | B] < 1.0    |             | [B] < 1.0   | [B] < 1.0   | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0 | [E] < 1.0   |
| vnematic TPH >C10-C12       | 0       | 2680   | mailia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0  | (B) < 1.0   |             | [8]<1.0     | [B] < 1,0   | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81<1.0    | [E] < 1.0   |
| Anomatic TPH >C12-C16       | n       | 2680   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0  | B]<1.0      |             | [B]<1.0     | [B] < 1.0   | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1]<1.0   | [B] < 1.0   |
| Arometic TPH >C16-C21       | 0       | 2680   | (Bilight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0  | Bj < 1.0    |             | [B] < 1.0   | [B] < 1.0   | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1) < 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 国<1.0     | [E] < 1.0   |
| Anomatic TPH >C21-C35       | n       | 2880   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0  | [B] <1.0    |             | [B] < 1.0   | B] < 1.0    | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (日) < 1.0 | [6] < 1,0   |
| Aromatic TPH >C35-C44       | Z       | 2680   | mg/kg/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0  | [B]<1.0     |             | [B] < 1.0   | [B] < 1.0   | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [8]<1.0   | [E] < 1.0   |
| olal Arematic Hydrocarbons  | z       | 2980   | mang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.0  | B] < 5.0    |             | (B) < 5.0   | [B] < 5.0   | [B] < 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 5.0 | [E] < 5.0   |
| otal Petroleum Hydrocarbons | z       | 2680   | mg/mg 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9    | [B] < 10    |             | [B] < 10    | [B] < 10    | [B] < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [B] < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [B] < 10  | 1  < 10     |
| Benziene                    | 0       | 2760   | pana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0  | (B) < 1.0   |             | 181<1.0     | [B]<1.0     | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (B) < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1.0 | [B] < 1.0   |
| olusno                      | 2       | 2760   | pyke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0  | [B] < 1.0   |             | [B] < 1.0   | B)<1,0      | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B] < 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 国<1.0     | [E] < 1.0   |
| Ethylberzene                | 0       | 2780   | payer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0  | [B] < 1.0   |             | [8] < 1.0   | [B] < 1.0   | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [6] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [B]<1.0   | B<1.0       |
| n & p-X/lene                | n       | 2760   | pakg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0  | B] < 1.0    |             | [B] < 1.0   | B1<1.0      | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [8] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 回 < 10    | B < 1.0     |
| o-Xytene                    | n       | 2760   | Dave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0  | (B) < 1.0   |             | [B] < 1.0   | B] < 1.0    | (国)<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B)<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [8] < 1.0 | [8] < 1.0   |
| Methyl Tert-Butyl Ether     | 2       | 2760   | payed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0  | [B] <1.0    |             | [B]<1.0     | B] < 1.0    | B<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [B] < 1.0 | B < 1.0     |
| Japhthalene                 | 2       | 2800   | Divolu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    | < 0.10      |             | +0.10       | < 0.50      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.10      |
| kosnaphthylene              | z       | 2800   | Biydhu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2    | < 0.10      |             | + 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.10      |
| Acenaphihene                | þ       | 2800   | they due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10   | < 0.10      |             | < 0.10      | < 0.10      | < 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.10      |
| tuorene                     | >       | 2800   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9    | < 0.10      |             | < 0,10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | × 0.10    | < 0.10      |
| <sup>shenardhrone</sup>     | 2       | 2800   | Baybu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9    | < 0.10      |             | < 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.10      |
| snittracerte                | -       | 2800   | they have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    | < 0.10      |             | < 0,10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0,10      |
| luprenthere                 | 2       | 2800   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10   | < 0.10      |             | < 0.0 >     | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.10      |
| ylene                       | 2       | 2800   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10 | < 0.10      |             | <0;0>       | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.10      |
| 3enzo[d]anthrizcend         | >       | 2800   | mp/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9    | < 0.10      |             | 0,0>        | < 0.10      | < 8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0,10    | ¢ 0,10      |
| Chryserte                   | 3       | 2800   | ma/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10   | < 0.10      |             | 0,0>        | < 0,10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | ¢ 0,10      |
| Senzo[b]fluoranthene        | n       | 2800   | mo/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10   | < 0.10      |             | < 0, 0      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | c 0, 10     |
| Benzo(k)tuorenthene         | 0       | 2800   | ma/kg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10 | < 0.10      |             | < 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0,10    | < 0.10      |
| Benzo[ajaynene              | n       | 2800   | mg/kg 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10   | < 0.10      |             | 0,'0 >      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.10      |
| Indeno(1,2,3-c,d)Pyrene     | 5       | 2800   | maka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10 | < 0.10      |             | < 0', 0 >   | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0.30      |
| Dibenz(a,h)Arithracene      | z       | 2800   | mg/log 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10   | < 0.10      |             | < 0.10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10    | < 0,10      |
| Benzojgih, ijperylene       | 2       | 2800   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | < 0.10      |             | < 0,10      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0,10    | c 0.10      |
| Coronere                    | z       | 2800   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | < 0.10 ×    |             | < 0'-0      | < 0.10      | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.10    | < 0.10      |
| olas Of 17 PAH's            | z       | 2800   | 2800 mg/kg 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | < 20        |             | +20         | <20         | < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 2.0     | < 2.0       |
| PCB:26                      | n       | 2815   | 2815 mg/kg 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | < 0.010     |             | < 0.010     | < 0:010     | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.010   | ×0.010      |
| PCB 52                      | 0       | 2815   | 2815 mg/tg 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _    | < 0.010     |             | < 0.010     | < 0.010     | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.010   | < 0.010     |
|                             |         |        | and the second sec | ļ    |             |             |             |             | and the second se | and the second se |           |             |

Page 9 of 46

## M Chemtest

#### Results - Soil

| Accretion         19-15643         19-15643         19-15643         19-15643         19-15643         19-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-15643         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563         18-1563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |         |        |          |          |             |             |             |             |          |          |            |                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--------|----------|----------|-------------|-------------|-------------|-------------|----------|----------|------------|----------------|--|
| Mo.:         Chemittent Sample ID:         641050         641061         641062         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641064         641064         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641063         641064         641064         641064         641064         641064         641064         641064         641064         641064         641064         641064         641064         641064         641064         641064         641016         641016         641016         641016         641016         641016         641016         641016         641016         641016         641016         641016         641016         641016         641016     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Client: 163L             |         | Cher   | ntest Jo | b.No.    | 19-19143    | 19-19443    | 18-18643    | 19-19843    | 19-19643 | 18-19643 | 15-19843   | 19-19643       |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chotation No.:           |         | Chamte | st Samp  | ole ID.: | 841055      | 841060      | 841061      | 841062      | 841063   | 841064   | 841065     | 841066         |  |
| Ammile Localison         TPQ1         TPQ2         TPQ2         TPQ3         TD3         TD3         TD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Order No.:               |         | Clier  | It Sampl | e Ref:   | AA96928     | AA99929     | AA113509    |             | AA99943  | AA98944  | AA96946    | AA99836        |  |
| Sample Type         SOL         SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |         | es.    | Imple Lo | celson:  | TPOT        | TPDI        | 1P02        | 1P02        | TP03     | 1F03     | 1P03       | 1004           |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |         |        | Sample   | Type     | SOL         | SOL         | SOIL        | SOIL        | SOIL     | SOIL     | SOIL       | SOIL           |  |
| Activity         T(0)         2(0)         0.5(c)         2(0)         0.5(c)         1(0)         1(0)           and         Date Sempler:         27.May-2019         24.May-2019         24.May-2019 <td< td=""><td></td><td></td><td></td><td>Top Dep</td><td>(h (m):</td><td>1,00</td><td>2.00</td><td>0.50</td><td>2,00</td><td>0.60</td><td>1.00</td><td>2.00</td><td>0.50</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |         |        | Top Dep  | (h (m):  | 1,00        | 2.00        | 0.50        | 2,00        | 0.60     | 1.00     | 2.00       | 0.50           |  |
| Clue Sampled         27.May-2019         24.May-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |         | Bot    | tors Dep | dh (m):  | 1,00        | 2.00        | 0.50        | 2,00        | 0.60     | 1.00     | 2.00       | 0.50           |  |
| Actract         Actract SOP         Ultis         LOD         COVENTRY         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |         |        | Date 54  | mplect   | 27-May-2019 | 27-May-2019 | 27-May-2019 | 24-May-2019 | 1.2.     |          | 24-84-2019 | 24-May-2019    |  |
| Actred.         SOP         Units         LOD          U         2815         mylap         0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <<0.010         <0.010         <<0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |         |        | Asbesk   | os Lab:  | COVENTRY    |             | COVENTRY    | COVENTRY    | COVENTRY | COVENTRY | COVENTRY   | COVENTRY       |  |
| U         2815         mp/lg         0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010         < < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Determinand              | Actred. | -      | 1.54-02  | LOD      | 1000        |             |             | 1.000       | - and -  | 1        | induced in | Contraction of |  |
| U         2816         mphg         0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010         <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PCB 116                  | 0       | 2815   |          | 0.010    | - < 0.010   |             | < 0.010     | < 0.010     | < 0.010  | < 0.010  | <0.010     | <0.010         |  |
| J         2815         myhrg         0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010 <td>PCB 150</td> <td>2</td> <td>2815</td> <td></td> <td></td> <td>&lt; 0.010</td> <td></td> <td>&lt; 0.010</td> <td>&lt; 0.010</td> <td>+ 0.010</td> <td>&lt; 0.010</td> <td>&lt; 0.010</td> <td>&lt;0.010</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PCB 150                  | 2       | 2815   |          |          | < 0.010     |             | < 0.010     | < 0.010     | + 0.010  | < 0.010  | < 0.010    | <0.010         |  |
| J         2815         mg/kg         0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010         < 0.010 <td>PCB 135</td> <td>7</td> <td>2815</td> <td></td> <td>0:010</td> <td>&lt; 0.010</td> <td></td> <td>&lt; 0:010</td> <td>&lt; 0.010</td> <td>&lt; 0.010</td> <td>&lt; 0.010</td> <td>&lt; 0.010</td> <td>&lt;0.010</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCB 135                  | 7       | 2815   |          | 0:010    | < 0.010     |             | < 0:010     | < 0.010     | < 0.010  | < 0.010  | < 0.010    | <0.010         |  |
| N 2815 mgAg 0.10 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < 0.0 < | PCB 180                  | 0       | 2815   |          | 0.010    | < 0.010     |             | < 0.010     | < 0.010     | < 0.010  | < 0.010  | < 0.010    | <0.010         |  |
| 1 1000 1000 1000 1000 1000 1000 1000 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total PCBs (7 Congeners) | 7       | 2815   | maha     | 0.50     | < 0.10      |             | < 0.10      | < 0.10      | < 0.10   | < 0.10   | < 0.10     | × 0,10         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Phenois            | 2       | 2820   | ma/kg    | 0.30     | < 0.30      |             | < 0.30      | < 0.30      | < 0.30   | < 0.30   | + 0.30     | < 0.30         |  |

1

1

ξ.

| +-  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|-----|----------------------------------------|
| S   | t Du                                   |
| 0   | 200                                    |
| ÷   | Tall                                   |
| E   | stry I                                 |
| (D) | tion F                                 |
| ž   | 1 AC                                   |
| 1   | 010101                                 |
| Q   | En H                                   |
| 5   | alo.                                   |
| 2.  | ã                                      |

#### Results - Soil

| (BMCE)  |   |
|---------|---|
|         | l |
| Dubit   |   |
|         |   |
| dener   | И |
| SH.     | l |
| 2.4     | l |
| in Road | I |
| 5.0     | ł |
| Airton  |   |
| 100.00  | н |
| 011     |   |
| 92      | н |
| P?      | l |
| ect     |   |
| 2       | l |

| Period:         641037         641047         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045         641045                                                                                                                                                                                                                             | 19 4 · · · · | 841071                                  | 841072      | 841073      | 011074         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|-------------|-------------|----------------|
| Titlendian         Clent Sample Fei-<br>sample Location         Adeeda         Addeeda         Addeeda         Addeeda           Final         Earnifie Location         TPOI         200.         200.         200.         200.           Final         Earnifie Location         TPOI         200.         200.         200.         0.50           Final         Earnifie Location         TPOI         200.         200.         0.50         0.50           Final         Earnifie Location         TPOI         200.         200.         200.         0.50           Final         U         2182         %         0.001         Dentected         200.         0.50           Addentic         U         2182         %         0.001         Dentected         200         0.50           Addentic         U         2182         MA         0.010         21.2         MA         200         0.50           Mater Solution         U         2120         myleg         0.0         1.1         2.00         0.50           Mater Solution         U         2120         myleg         0.0         1.1         2.00         0.50           Mater Solution         U         2120                                                                                                                                                                                                                                                                                                                                                  |              | A N N N N N N N N N N N N N N N N N N N |             |             | +JD1+0         |
| Sample Type         Solit         FP04         TP04                                                                                                                                                                                                                                                                                                     |              | 0.4113535                               | AATTERN     | A469935     | AA99836        |
| Top Depth (m)         Top Depth (m)         Top         Solution                                                                                                                                                                      | Solt         | 1000                                    | TOOR        | 1001        | 11007          |
| Top Depin I ryle:         SOIL         SOIL <td>SUL</td> <td>0012</td> <td>in the</td> <td>1041</td> <td>- ILOI</td>                                                                                                                                                                                                                       | SUL          | 0012                                    | in the      | 1041        | - ILOI         |
| Top Deshh (m):         1.00         2.06         0.65           Anter Deshh (m):         1.00         2.00         0.65           Anter Deshh (m):         1.00         2.00         0.65           Anter Deshh (m):         2.01         0.65         0.65           Anter Deshh (m):         1.00         2.04         0.65           Anter Deshh (m):         2.01         0.65         0.65           Anter Deshh (m):         1.00         No. Abbetton         2.04         0.65           Anter Deshh (m):         2.13         No.         2.02         1.1         9.7         19           Anter Deshh (m):         1.01         0.010         0.010         2.04         0.65         0.65           Anter Deshh (m):         1.0         2.140         No.         0.010         0.45         0.010           Anter Deshh (m):         1.0         2.140         No.         0.010         0.45         0.010         0.45           Anter Deshh (m):         1.0         0.010         1.2         0.010         0.45         0.005           Anter Deshh (m):         1.2         0.010         0.12         0.12         0.010         0.45         0.005           Anter                                                                                                                                                                                                                                                                                                                                                        |              | SOIL                                    | SOIL        | 5011        | SOIL           |
| Eutoner Osphit (m):         1.00         2.00         0.0.5           Accored.         Step         Untrial         LOID         2142         0.01         2146         27-Milly-2019         27-                                                                                     | 1,00         | 0.50                                    | 2,00        | 0,50        | 1.00           |
| Accreate         Stantine Lob         Concente Lance         Data Sampled         274,May-2019         274,May-2019 <td>1.00</td> <td>0.50</td> <td>2.00</td> <td>0.50</td> <td>1,00</td> | 1.00         | 0.50                                    | 2.00        | 0.50        | 1,00           |
| Accerted:         SOP         Units         LOD         COVENTRY         COVENTRY         COVENTRY           U         1 2162         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27-May-2019  | 27-May-2019                             | 33          | 24-May-2019 | 24-May-2018    |
| Accreat         SQP         Units         LOD         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                       | COVENTRY     | COVENTRY                                | COVENTRY    | COVENTRY    | COVENTRY       |
| U         2182         MA         -         -         -           Mello         U         2182         %         0.001         Databatos         No. Adbettos         No. Adbettos<                                                                                                                |              |                                         |             |             |                |
| 1         1         2192         %         0.001         No Astheticos         No         Astheticos           1         1         2192         %         0.001         11         9.7         19         Denecoted           1         1         2192         %         0.020         11         9.7         19         Denecoted           1         1         2120         market         0.010         ~0.010         6.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613         0.613 <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                             |              |                                         |             |             |                |
| Hell         U         2192         NA         Deficient         Deficient <thdeficient< th="">         Deficient         &lt;</thdeficient<>                                                                                                                           | No Asbestos  | No Asbestos                             | No Asbestos | No Asbestos | No Asbestos    |
| N         2736         NA         *         9.7         5         7         5           Abio         U         2730         NA         NA         8.4         15         15         15           Abio         U         2712         malked         0.40         ×0.40         0.61         1.3         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43         1.43                                                                                                                                                                                                                                                                                                                                          | -            | Detected                                | CIBIDEDED : | CHERCERCE   | CINED OF COLOG |
| N         2000<br>2010         % 0.020<br>% 0.020         11         9.7         19           Abbib ses SO4         U         2720         m/m         0.010         4.3         0.43         4.04           Abbib ses SO4         U         2720         m/m         0.010         4.3         0.43         4.45           Mabbib ses SO4         U         2720         m/m         0.010         4.3         0.43         4.45           U         2720         m/m         0.010         5.0         9.10         4.45         4.45         4.45           U         22456         m/m         0.10         2.0110         2.0110         0.033         0         0.033         0         1.3         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45         4.45 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                 |              |                                         |             |             |                |
| (a)         U         2000         NMA         NMA         SA         A           Abie) aes SO4         U         2120         mMA         0.010         <0.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =            | 10                                      | 1.7         | 30          | 8.4            |
| Jaio         Lu         2120         maked         0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.45         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H </td <td></td> <td></td> <td>-</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                              |              |                                         | -           |             |                |
| Able) as SOA         U         2120         p/l         0.010         4.000         1.3           (sole)         U         2205         mg/log         1.6         1.3         1.3           (sole)         U         2205         mg/log         0.60         9.0         1.3         1.3           (sole)         N         2205         mg/log         0.60         2.010         5.00         9.0         4.45         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.010         0.010                                                                                                                                                                                                                                                                                                              | < 0,40       | < 0,40                                  | < 0.40      | < 0.40      | × 0.40         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                                         |             |             |                |
| (a)         (a) <td>1.3</td> <td>5,1</td> <td>&lt; 1.0</td> <td>&lt;1.0</td> <td>¢ 1.0</td>                                                                                                                                                                                                                                                                 | 1.3          | 5,1                                     | < 1.0       | <1.0        | ¢ 1.0          |
| NI         2235         myka<br>(0.016)         0.50         9.6         9.6         9.6         9.5         9.5         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.0303         0.040         0.030         0.0303         0.040         0.040         0.010         0.040         0.010         0.040         0.010         0.040         0.010         0.040         0.010         0.040         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.010 <th< td=""><td>0 [B] &lt; 0.50</td><td>18] &lt; 0.50</td><td>[B] &lt; 0.50</td><td> B  &lt; 0.60</td><td>(B) &lt; 0.50</td></th<>                                                                                                                  | 0 [B] < 0.50 | 18] < 0.50                              | [B] < 0.50  | B  < 0.60   | (B) < 0.50     |
| 1         2430         %         0.010         <0.010         <0.030         0           1         2456         mylkg         1.0         21         1.9         1.9           1         2456         mylkg         0.10         1.1         21         1.9           1         2456         mylkg         0.10         1.1         21         3.4           1         2456         mylkg         0.10         1.1         2.9         3.4           1         2456         mylkg         0.10         1.1         2.0         2.0           1         2456         mylkg         0.10         2.1         2.4         3.4         0.3           1         2456         mylkg         0.10         2.0         2.1         2.0         2.0         2.0           1         2456         mylkg         0.10         2.1         2.0         2.0         2.4         2.0           1         2456         mylkg         0.50         2.1         2.0         2.4         2.4           1         2456         mylkg         0.50         2.1         2.4         2.4         2.4           1         1                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19           | 9.6                                     | 9.7         | 6.0         | 11             |
| U $2460$ $mylog$ $1.0$ $241$ $mylog$ $1.0$ $241$ $1.0$ $241$ $1.0$ $2410$ $mylog$ $0.10$ $1.7$ $3.4$ $3.3$ $0$ $0$ U $2460$ $mylog$ $0.10$ $1.7$ $3.4$ $3.3$ $0$ $0$ $3.6$ $0$ $0.6$ $3.6$ $0.6$ $3.6$ $0.6$ $3.6$ $0.6$ $3.6$ $0.6$ $3.6$ $0.6$ $3.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ $0.6$ </td <td>0.23</td> <td>0.016</td> <td>&lt; 0.010</td> <td>D:048</td> <td>&lt; 0.010</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23         | 0.016                                   | < 0.010     | D:048       | < 0.010        |
| U         2460         making         10         44         93         1           U         2460         making         1.0         1.7         3.4         9.3           U         2450         making         1.0         1.7         3.4         9.3           U         2450         making         2.0         1.7         3.4         9.3           U         2450         making         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         2.0         0.0         2.0         2.0         0.0         2.0         2.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                | 14           | 35                                      | 19          | 拐           | 27             |
| U         2460         mplug         0.10         1.1         3.4         0           U         2450         mplug         1.0         1.2         20         20         20           U         2450         mplug         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                  | 130          | 57                                      | 42          | 96          | 18             |
| U         2450         mp/kg         1.0         1.2         2450         mp/kg         2.0         3.0         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         3.4         2.0         2.0         3.4         2.0         2.0         3.4         2.0         2.0         3.4         2.0         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4         3.4                                                                                                                                                                                                                                                                                                                                         | 0.39         | 2.1                                     | 41          | 2.8         | 1.7            |
| U         24450         mpkg         2.0         3.0         3.4           N         24460         mpkg         2.0         <2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42           | 18                                      | 4           | 23          | 12             |
| N         2450         mplug         2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2.0         <2                                                                                                                                                                                                                                                                                                     | 4.6          | 3.0                                     | 2.5         | 8.6         | 3.3            |
| U         2450         mg/kg         0.50         21         29           U         2460         mg/kg         0.10         <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×2.0         | < 2.0                                   | < 2.0       | 2.0         | 5.1            |
| U         2460         mg/kg         0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.10         < 0.14         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                   | 27           | 26                                      | 6           | 野           | 20             |
| U         2460         mplog         0.60         36         36         66           U         2460         mplog         0.60         15         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24         24                                                                                                                                                                                                                                                                                                                                                                                               | < 0.10       | < 0.10                                  | < 0,10      | < 0.10      | < 0.10         |
| U         24/50         mp/up         0.560         15         24           U         24/60         mp/up         0.50         +0.20         0.49         0.49           U         24/60         mp/up         0.50         <0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 49                                      | 45          | 60          | 40             |
| U         2450         mpkg         0.20         < 0.10         6.49         0.49         0           U         2460         mpkg         0.60         58         62         < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52           | 15                                      | 14          | 34          | 96             |
| U         24/50         mg/kg         0.60         58         82           N         24/50         mg/kg         0.60         58         82           N         24/50         mg/kg         0.50         53         20           N         24/50         mg/kg         0.50         53         20           N         2655         mg/kg         0.50         6.30         6.10         4           N         2656         mg/kg         1.0         81         0.34         0.42         6           N         2656         mg/kg         1.0         81         0.33         0.43         6         4           N         2660         mg/kg         1.0         81         0.33         0.42         6         4           N         2660         mg/kg         1.0         81         0.33         0.42         6         4           N         2660         mg/kg         1.0         81         1.0         81         1.0         81         4           N         2660         mg/kg         1.0         81         1.0         81         4         0         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.67         | < 0.20                                  | < 0.20      | 0.70        | < 0.20         |
| N         2460         mgkg         1.0         1.2         2.0         1.2         2.0         1.2         2.0         1.2         2.0         1.2         2.0         1.2         2.0         1.2         2.0         1.2         2.0         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2         1.2 <th1.2< th="">         1.2         <th1.2< th=""></th1.2<></th1.2<>                                                                                                                                                                                                                                                                                                             | 100          | 62                                      | 64          | 120         | 51             |
| N         2850         mgNg         0.50         < 0.30         0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.40         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41         < 0.41                                                                                                                                                                                                                                           |              | 18                                      | 14          | 52          | 12             |
| U         2605         %         0.20         0.33         0.42         0           N         2600         mgNg         10         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | < 0.50                                  | < 0.50      | < 0.50      | < 0.50         |
| N         2870         mpMp         10         <10         <13         <14         <15         <15         <16         <16         <16         <16         <16         <16         <16         <16         <16         <16         <16         <16         <16         <16         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <16         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10         <10                                                                                                                                                                                                                                                                                                                                              | 0.27         | 0.38                                    | 0.21        | 0.87        | < 0.20         |
| N         2880         mg/kg         1.0         [B] < 1.0                                                                                                                                                        | <10          | > 10                                    | < 10        | < 10        | < 10           |
| N         Zeno mayle         1.0         Bis1.0         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01         01                                                                                                                                                                                                                                                                                                                                                                                      | [B]          | [B] < 1.0                               | [B] < 1.0   | 围<10        | [B] < 1.0      |
| U         2860         mpAg         1.0         BI<<1.0         BI<<1.0         BI<<1.0         BI<<1.0         BI<<1.0         BI                                                                                                                                                                                                                                                                                                                                                                                | _            | [B] < 1.0                               | [B] < 1.0   | 国<1.0       | [B] < 1.0      |
| U         2860 mg/kg         1.0         183 < 1.0         183 < 1.0         18 < 1.0         19 < 1.0         19 < 1.0         10 < 10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10          10                                                                                                                                                                                                                                                                                                                                 | B            | [B] < 1.0                               | [B] < 1.0   | [B] < 1.0   | [B] < 1.0      |
| U 2660 mg/kg 1.0 [B]<1.0 [B]<1.0 [B]<1.0 [B]<br>1.1 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _            | [B] < 1.0                               | [B] < 1,0   | [B] < 1.0   | [B] < 1.0      |
| 101 101 101 101 101 101 101 101 101 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 問<1.0      | [B] < 1.0                               | [B] < 1.0   | [B] < 1.0   | [B] < 1.0      |
| AT CAL AT CAL AT Futbul And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            | 国<1.0                                   | B]<1.0      | [8] < 1.0   | (1) < 1.0      |
| [B]<1.0 [B]<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -            | [B] < 1.0                               | [B] < 1.0.  | [B] < 1.0   | [6] < 1.0      |
| N 2660 mg/ng 1.0 [B] <1.0 [B] <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  B] < 1.0  | [B] < 1.0                               | [B] < 1.0   | [8] < 1.0   | [8] < 1.0      |
| [B] < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -            | [B] < 5.0                               | [B] < 5.0   | [B] < 5.0   | [B] < 5.0      |

## M Chemtest

Results - Soil

| Client: IGSL                   |         | Cher                 | Chembest Job No.:  | Colo No.:      | 19-19343  | 19-19643    | 19-19643    | 19-19843  | 19-19643    | 19-19643  | 16-19643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19-19643    |
|--------------------------------|---------|----------------------|--------------------|----------------|-----------|-------------|-------------|-----------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Quotation No.                  |         | Chemtest Sample ID.: | et sam             | ple ID.;       | 641067    | B41068      | 841068      | 841070    | 841071      | 841072    | 841073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 841074      |
| Order No.1                     |         | Clier                | Client Sample Ref. | de Ref         | AA96930   | A495940     | AA153613    | AA153514  | AA113516    | AA113518  | AA59935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AA999336    |
|                                |         | 88                   | Sample Location    | ocstion.       | TP04      | TPON        | 30d1        | 1P06      | 3P06        | 1P06      | 2041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1P07        |
|                                |         |                      | Samp               | Sample Type.   | SOL       | SOL         | SOIL        | SOIL      | SOIL        | SOIL      | BOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOIL        |
|                                |         |                      | Top De             | Top Depth (m): | 1.00      | 2.00        | 0.60        | 1,00      | 0.50        | 2.00      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00        |
|                                |         | Bat                  | Battors Depth (m): | pth (m):       | 1.00      | 2.00        | 0.60        | 1,00      | 0.50        | 2:00      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00        |
|                                |         |                      | Dale Su            | Date Sampled:  | _         | 27-May-2019 | 27-May-2019 | -         | 27-May-2019 |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24-May-2019 |
|                                |         |                      |                    |                | COVENTRY  |             | COVENTRY    | COVENTRY  | COVENTRY    | COVENTRY  | COVENTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COVENTRY    |
| Determinand                    | Accred. | SOP                  | Units              | LOD            |           |             |             |           |             |           | and a second sec |             |
| Aromatic TPH >C5-C7            | z       | 2680                 | mphig              | 1.0            | [B] < 1.0 |             | 16] < 1,0   | [8] < 1,0 | [8] < 1.0   | [B] < 1.0 | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1~1)       |
| Aromatic TPH >C7-C8            | z       | 2680                 | mgikg              | 1.0            | (B) < 1.0 |             | (B) < 1.0   | [8] < 1.0 | [B] < 1.0   | [B] < 1.0 | E]<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [B] < 1.0   |
| Arometic TPH >C6-C10           | 2       | 2680                 | phighter.          | 1.0            | B] <1.0   |             | 0'. > (B)   | [B] < 1.0 | [B] < 1.0   | [B] < 1.0 | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [B] < 1.0   |
| Aromatic TPH >C10-C12          | 2       | 2680                 | Dividia.           | 1.0            | [B] < 1.0 |             | 0'. > [9]   | [B]<1.0   | [B] < 1.D   | [B] < 1.0 | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1 > [9]   |
| Aromatic TPH >C12-C16          | 3       | 2680                 | Billigm            | 1.0            | [B] < 1.0 |             | 0、>(日)      | [B]<1.0   | [B] < 1.0   | [B] < 1.0 | [E] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [B] < 1.0   |
| Arometic TPH >C16-C21          | 2       | 2680                 | mpkgm              | 1.0            | B] < 1.0  |             | 0'. > [E]   | 101 < 1.0 | [8] < 1.0   | [B] < 1.0 | EI<1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (II) < 1.0  |
| Aromatic TPH >C21-C35          | 2       | 2680                 | marking            | 1.0            | [B] < 1,0 |             | [H] < 1,0   | [B] < 1.0 | [B] < 1.0   | [B] < 1.0 | [B] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E) < 1.0   |
| Aromatic TPH >C35-C44          | z       | 2680                 | Biytu              | 1.0            | [B]<1.0   |             | 01.>10      | [B] < 1.0 | [B] < 1.0.  | B]<1.0    | 同 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 回<1.0       |
| fotal Aromatic Hydrocarbons    | z       | 2680                 | Dydu               | 0.5            | [8] < 5.0 |             | [B] < 5,0   | [B] < 5.0 | [B] < 5.D   | [B] < 5.0 | [B] < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E) < 5.0   |
| Total Perroleum Hydrocarbons - | z       | 2680                 | marked             | 10.01          | (B) < 10  |             | B] < 10     | [B] < 10  | [B] < 10    | [B] < 10  | [B] < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 国 < 10      |
| Benzene                        | 2       | 2760                 |                    | 1.0            | [B] < 1.0 |             | 1日<1.0      | [B] < 1.0 | [B] < 1.0   | [8]<1.0   | [6] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (日) < 1.0   |
| olushe                         | 2       | 2760                 | DNg4               |                | 8]<1.0    |             | [E] < 1.0   | [B] < 1.0 | [B] < 1.0   | 国<1.0     | [8] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [E] < 1.D   |
| Ethytheruene                   | 2       |                      | pin/git            |                | [B] < 1.0 |             | [B] < 1.0   | [B] < 1.0 | [B] < 1.0   | [B]<1.0   | [8] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (日<1.0      |
| m & p-Xylene                   | 2       |                      | page               | 1.0            | [B] < 1.0 |             | B] < 1.0    | [B] < 1.0 | [B] < 1.0   | [6] < 1.0 | (日 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [E]<1.0     |
| o-Xyfene                       | D       | 2760                 | 1979G              | -              | [B] < 1.0 |             | [B] < 7.0   | [B] < 1.0 | [8] < 1.0   | 国 < 1.0   | [8] < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E) < 1.0   |
| Methyl Tent-Butyl Ether        | 2       | 2760                 | Dividit            | 1.0            | [B] < 1,0 |             | [B] < 1.0   | [B] < 1.0 | [B] < 1.0   | [B] < 1.0 | (8) < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 国 < 1.0     |
| Vephtha ene                    | 2       | 2800                 | make               | 0.10           | < 0.10    |             | < 0,10      | < 0.10    | < 0,10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | × 0,10      |
| Voenaphthylane                 | z       | 2800                 | Bydu               | 0.10           | < 0.10    |             | < 0,10      | < 0,10    | < 0,10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Accemationerse                 | 2       | 2800                 | ma/kg              | 0.10           | < 0.10    |             | < 0,10      | < 0.10    | < 0,10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0.10       |
| luorene                        | 3       | 2800                 | Bildm.             |                | < 0.10    |             | < 0,10      | < 0.10    | < 0.10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | × 0,10      |
| Pheneritrene                   | 3       | 2800                 | Bildm              |                | × 0.10    |             | < 0,10      | < 0,10    | < 0,10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.50      |
| Anthracene                     | 2       | 2800                 | mp/kg              | 0.10           | < 0,10    |             | < 0.10      | < 0.10    | < 0.10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Tuoranthene                    | 2       | 2800                 | polygim.           | 0.10           | < 0,10    |             | < 0.10      | < 0,10    | < 0.10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | × 0.10      |
| Pytene                         | 2       | 2800                 | mg/kg              | 0.10           | < 0.10    |             | < 0.10      | < 0.10    | < 0.10      | < 0.10    | < 0,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Benzojajanthracene             | 2       | 2600                 | ma/kg              | 0.10           | < 0,10    |             | < 0,10      | < 0,10    | < 0.10      | < 0.10    | < 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Chrystene                      | 2       | 2800                 | mg/kg              | 0.10           | < 0.10    |             | < 0.10      | < 0.10    | < 0.10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0,10      |
| Benzo[b]fluoranthene           | 5       | 2800                 | Вк/бш              | 0.10           | < 0.10    |             | < 0.10      | < 0.10    | < 0.10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Benzojkjiuoranthene            | 2       | 2800                 | mo/kg              | 0.10           | < 0,10    |             | < 0.10      | < 0.10    | < 0.10      | < 0,10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Benzo[e]pyrene                 | 3       | 2800                 | mg/kg-             | 0.10           | < 0,10    |             | < 0.10      | < 0.10    | < 0,10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| ndeno(1,2,3-c,d)Pyrene         | 2       | 2800                 | mp/kg              | 0.10           | < 0.10    |             | < 0.10      | < 0.10    | < 0.10      | < 0.30    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Dithaniz(a,ht)Ainthrecene      | z       | 2800                 | mg/kg              | 0.10           | <0,10     |             | < 0.10      | < 0.10    | < 0.10      | < 0,10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Banzo(g.h.i)perylane           | 9       | 2800                 | Big/6uu            | 0.10           | < 0.10    |             | < 0.10      | < 0.10    | < 0.10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Coronena                       | N       | 2800                 | mp/98              | 0.10           | < 0.10    |             | < 0.10      | < 0.10    | < 0.10      | < 0.10    | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10      |
| Fotal Of 17 PAH's              | z       | 2800                 | malkg              | 2.0            |           |             | < 2.0       | <2.0      | <2.0        | < 2.0     | < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 2.0       |
| PCB 28                         | 2       | 2815                 | mg/kg              | mg/kg 0.010    |           |             | < 0:010     | < 0.010   | < 0.010     | < 0.010   | <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | × 0.010     |
| PCB 52                         | 1       | 2815                 | 2815 mg/kg 0.010   | 0.010          |           |             | < 0.010     | < 0.010   | < 0.010     | < 0:010   | < 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.010     |
| and states in the second       |         |                      |                    |                |           |             |             |           |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |

Results - Soil

| Client MSL               |         | Cher   | Chemitest Job No.;        | toN of   | 19-19543    | 19-19043    | 18-19643    | 19-19040     | 19-19643    | .18-19643   | 19-19843    | 16-19643    |
|--------------------------|---------|--------|---------------------------|----------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|
| Quotation No.:           |         | Chemte | Chemiest Sample ID.:      | fie ID.: | 841067      | 841058      | 841069      | 841070       | 841071      | 841072      | 841073      | 841074      |
| Order No.:               |         | Clint  | <b>Clinnt Sample Ref.</b> | B Ref :  | AA99339     | AA99940     | A4113513    | AA113514     | AA113516    | AA113518    | AA99935     | A499936     |
|                          |         | ß      | Sample Location:          | cation:  | TP04        | TPOG        | 1P05        | TPOS         | 90-d1       | 1906        | TP07        | 1001        |
|                          |         |        | Sample Type:              | + Type:  | SOL         | SOIL        | SOIL        | SOIL         | SOIL.       | SOIL        | SOIL.       | SOIL        |
|                          |         |        | Top Depth (m):            | th (m):  | 1.00        | 2,00        | 0.60        | 1.00         | 0,50        | 2.00        | 0.50        | 1.00        |
|                          |         | Bott   | Bottom Depth (m):         | (h (m):  | 1.00        | 2.00        | 0.50        | 1.00         | 0.50        | 2.00        | 0.50        | 1.00        |
|                          |         |        | Date Sampled:             | mpled:   | 24-May 2018 | 27-May-2019 | 27-May-2019 | 27-Mary-2019 | 27-May-2019 | 24-May-2019 | 24-Mey-2019 | 24-May-2019 |
|                          |         |        | Asbestos Lab:             | 12 Lab:  | COVENTRY    |             | COVENTRY    | COVENTRY.    | COVENTRY    | COVENTRY    | COVENTRY    | COVENTRY    |
| Determinand              | Accred. | SOP    | Units                     | EOD      |             |             |             |              |             |             |             |             |
| PCB 118                  | 1       | 2815   | mp/kg 0.010               | 01000    | < 0,010     |             | < 0.010     | < 0.010      | < 0.010     | ×.0.010     | <0.010      | <0.010      |
| PCB 163                  | 0       | 2815   | mg/kg 0.010               | 0.010    | < 0.010     |             | < 0.010     | < 0.010      | < 0,010     | < 0,010     | < 0.010     | <0.010      |
| PCB 136                  | 0       | 2815   | mg/kg 0.010               | 0:030    | < 0.010     |             | < 0.010     | < 0.010      | < 0.010     | < 0.010     | <0.010      | <0.010      |
| PCB 160                  | 0       | 2615   | mg/kg 0.010               | 0100     | < 0.010     |             | < 0.010     | < 0.010      | < 0,010     | × 0.010     | < 0.010     | <0.010      |
| Total PCBs (7 Congeners) | z       | 2815   | maikg                     | 0.10     | < 0.10      |             | < 0.10      | < 0,10       | < 0.10      | < 0.10      | < 0,10      | × 0,10      |
| Total Phanois            | -       | 2920   | Billipm                   | 0.30     | < 0.30      |             | < 0.30      | < 0.30       | < 0.30      | < 0.30      | < 0.30      | × 0.30      |

11

Page 13 of 46

#### Chemtest The optic mension is of the optic of 21833 Airon Road, Tallaght, Dubli ×.

Results - Soil

| Client IGSI                         |         | Che      | Chemtest Job No.    | sh No.        | 10.10649                | 10-10643                | 19-19643                | 10-10043                |
|-------------------------------------|---------|----------|---------------------|---------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Quotation No.                       |         | Chernite | Chembest Sample ID. | Die ID        | 841075                  | 841076                  | 841077                  | 841078                  |
| Order No.                           |         | Cle      | Clerit Sample Ref.  | le Ref.       | 1009931                 | AA99632                 | AA99827                 | AA98629                 |
|                                     |         | 65       | Sample Location     | ocation:      | TPOB                    | 1P08                    | 1P09                    | 1P09                    |
| 1                                   |         |          | Samph               | Sample Type:  | SOL                     | SOL                     | SOIL                    | SOIL                    |
|                                     | L       |          | Tap Depth (m):      | (im) #10      | 0.50                    | 1,00                    | 0.50                    | 2.00                    |
|                                     |         | 80       | Bottom Depth (m):   | (m) (l)       | 0.50                    | 1.00                    | 0.50                    | 2.00                    |
|                                     |         |          | Date Sampled:       | impled:       | 24-May-2019             | 24-May-2019             | 24-May-2019             | 24-Muy-2019             |
|                                     |         |          | Asbest              | Asbestos Lab: | COVENTRY                | COVENTRY                | COVENTRY                | COVENTRY                |
| Determinand                         | Accred. | SOP      | Units               | 100           |                         |                         |                         |                         |
| ACM Type                            | 0       | 2102     |                     | MA            |                         | 8                       | 1                       | 1                       |
| Asbestos Identification             | 0       | 2102     | sit.                | 0,001         | No Asbestos<br>Detected | No Astestos<br>Detecied | No Asbestos<br>Detected | No Asbestos<br>Detected |
| ACM Detection Stage                 | 0       | 2192     |                     | NUA           | 9                       | +                       |                         |                         |
| Moisture                            | 2       | 2030     | 2                   | 0.020         | 13                      | 10                      | 13                      | 10                      |
| Hd                                  | 0       | 2010     |                     | N/A           |                         |                         |                         |                         |
| Boron (Hot Water Soluble)           |         | 2120     | mg/kg               | 0.40          | < 0.40                  | < 0.40                  | < 0.40                  | < 0.40                  |
| Sulphate (2:1 Water Schuble) as SO4 |         | 2120     | 10                  | 0.010         |                         |                         |                         |                         |
| Suptur (Elemental)                  | 5       | 2180     | mg/kg               | -             | 52                      | < 1.0                   | 1.0                     | 1.3                     |
| (Cyanide (Total)                    | 5       | 2300     | marka               |               | [H] < 0.50              | [B] < 0.50              | [13] < 0.50             | EI < 0.50               |
| Sulphide (Easily Liberatishle)      | z       | 2325     |                     | 0.50          | 18                      | 15                      | 13                      | 17                      |
| Suphata (Acid Schuble)              | 0       | 2430     | 2                   | 0.010         | 0.046                   | 0,010                   | < 0.010                 | < 0.010                 |
| Arsanic                             | -       | 2450     | ma/ka               | 1.0           | 26                      | 26                      | 24                      | 23                      |
| Baium                               | 5       | 2450     | mallia              | 10            | 41                      | 41                      | ŝ                       | 33                      |
| Cadmiun                             | -       | 2450     |                     | 0.10          | 2.0                     | 1.9                     | 1.9                     | 2.0                     |
| Chromium                            | -       | 2450     |                     |               | #                       | 5                       | 12                      |                         |
| Molybdenum                          | -       | 2450     | malka               | 2.0           | 3.7                     | 3.3                     | 2.9                     | 33                      |
| Antimony                            | z       | 2450     | eng/kg              | 2.0           | 4.0                     | 50                      | 3.0                     | 23                      |
| Copper                              | 0       | 2450     |                     | _             | 24                      | 23                      | 22                      | 16                      |
| Mercury                             | -       | 2450     |                     |               | < 0.10                  | < 0.10                  | < 0.10                  | < 0.10                  |
| Nicket                              | 0       | 2450     |                     | 0:20          | 43                      | 40                      | 41                      | 31                      |
| Load                                | 2       | 2450     |                     | 0.50          | 16                      | 26                      | 21                      | 13                      |
| Selenium                            | 2       | 2450     |                     | 0.20          | < 0.20                  | < 0,20                  | < 0.20                  | 0.48                    |
| Zinc                                | 2       | 2450     | marka               | 0.50          | S                       | 65                      | 13                      | 72                      |
| Chromium (Trivalent)                | 7       | 2490     | marka               | 1.0           | 14                      | 15                      | 15                      | 11                      |
| Chromium (Hexervient)               | 7       | 2490     |                     |               | < 0.50                  | < 0,50                  | < 0.50                  | < 0.50                  |
| Total Organic Carbon                | -       | 2625     | st.                 | 0.20          | 0.31                    | 0.24                    | 0.36                    | 0.29                    |
| Mineral Oil                         | 7       | 2670     | mgrkg               | 10            | < 10                    | < 16                    | < 10                    | < 10                    |
| Alphatic TPH >C5-C6                 | 7       | 0892     | make                | 1.0           | 8 < 1.0                 | B]<1.0                  | [B] < 1.0               | [3] < 1.0               |
| Alphatic TPH >C8-C6                 | 7       | 2680     | man                 | 1             | B] < 1,0                | [B] < 1.0               | [B] < 1.0               | [B] < 1.0               |
| Alphalic TPH >C8-C10                | 2       | 2680     | makin               | 1.0           | [B] < 1.0               | [B] < 1,0               | [B] < 1.0               | 国<1.0                   |
| Alphabic TPH >C10-C12               | -       | 2680     | maha                | 1.0           | [B] < 1.0               | [B] < 1.0               | 18] < 1.0               | [B] < 1.0               |
| Alphatic TPH >C12-C18               | 2       | 2680     | manua               | 1.0           | [B] < 1.0               | B] < 1,0                | B] < 1,0                | [B] < 1.0               |
| Alphatic TPH >C18-C21               | -       | 2880     | _                   | 1.0           | [B] < 1.0               | [B] <1,0                | 国<1.0                   | []<1.0                  |
| Aliphatic TPH >C21-C35              | 5       | 2680     |                     |               | [B] < 1.0               | [B] < 1.0               | [B] < 1.0               | [B] < 1.0.              |
| Alighmetic TPH >C35-C44             | z       | 2680     |                     | E . 1         | [B] < 1.0               | B] < 1.0                | [B] < 1.0               | BI < 1.0                |
| Total Aliabatic Hutmosthore         | 2       | 2680     |                     | 5.0           | [B] < 5.0               | BI<5.0                  | 18] < 5.0               | 国 < 5.0                 |

## Chemtest Project 21613 Articin Read, Tollaght, Dublin

#### Results - Soil

| Client: IGSL                |        | Chen   | Chemtest Job No.     | D.No.1 | 19-1943              | 18-1943     | 19-19643    | 19-19643          |
|-----------------------------|--------|--------|----------------------|--------|----------------------|-------------|-------------|-------------------|
| Quetation No.:              |        | Chemte | Chemtest Sample ID.: | = 1D.: | 841075               | 841076      | - 841077    | 841078            |
| Order No.1                  |        | Clier  | Client Sample Ref.   | Ref    | AA96931              | AA90932     | AA99627     | AA96929           |
|                             | _      | 80     | Sample Location      | allon: | 1P08                 | TP08        | 1P09        | 1P09              |
|                             |        |        | Sample Type:         | Type   | SOL                  | SOL         | SOIL        | SOIL              |
|                             | _      |        | Top Depth (m):       | H (m): | 0,50                 | 1.00        | 0.50        | 2.00              |
|                             |        | Bot    | Bottom Depth (m):    | h (m): | 0.50                 | 1.00        | 0.50        | 2.00              |
|                             |        |        | Date Sampled         | npled. | 24-May-2019          | 24-May-2019 | 24-May-2019 | 24-May-2019       |
|                             |        |        | Asbestos Lab         | 8 Lab  | COVENTRY             | COVENTRY    | COVENTRY    | COVENTRY          |
| Delerminand                 | Actred | SOP    | Units                | LOD    | S Annual Contraction | and and     | Constant -  | The second of the |
| Arometic TPH >C5-C7         | z      | 2680   | mg/kg-               | 1.0    | B] < 1.0             | (1) < 1,0   | (1) ~ (1)   | [B] < 1,0         |
| Aromatic TPH >C7-C8         | Z      | 2680   | manual               | 1.0    | [B] < 1.0            | [B] < 1.0   | [B] < 1.0   | [B] < 1.0.        |
| Arontatic TPH >C8-C10       | -      | 2680   | maha                 | 1.0    | [B] < 1.0            | [B] <1.0    | 0、>(日)      | [B] < 1.0         |
| Aromatic TPH >C10-C12       | 2      | 2680   | mg/kg                | 1.0    | [B] < 1.0            | (B) < 1,0   | (1) < 1,0   | [B] < 1,0         |
| Aromatic TPH >C12-C16       | 5      | 2680   | maña                 | 1.0    | B]<1.0               | [B] < 1.0   | 日子 (0)      | [B] < 1.0.        |
| Aroniatic TPH >C16-C21      | 5      | 2680   | marka!               | 1.0    | B] < 1.0             | (B) < 1.0   | [B] < '.0   | [B] < 1.0         |
| Aromatic TPH >C21-C35       | -      | 2680   | mp/kg                | 1.0    | [B]<1.0              | B] < 1,0    | [1] < 1.0.  | [B] < 1.0         |
| Aromatic TPH >C35-C44       | z      | 2680   | mp/kg                | 1.0    | B] < 1.0             | [B] < 1.0   | [B] < 1.0   | [B] < 1.0         |
| Total Aromatic Hydrocarbons | z      | 2880   | mpring               | 5.0    | (B) < 5.0            | BJ < 5.0    | [B] < 5.0   | [B] < 5.0         |
| Total Percleum Hydrocarbons | z      | 2680   |                      | 10.01  | [B] < 10             | [8] < 10    | 181 < 10    | BI<10             |
| Benzene                     | 0      | 2760   | Dyllin               | 1.0    | [B] < 1.0            | [B] < 1,0   | [B] < 1,0   | [B] < 1.0         |
| Toluene                     | 0      | 2780   | Digit.               | 1.0    | [B] < 1.0            | B <1,0      | [B] < 1.0   | 国<1.0             |
| Ethytbanzana                | 2      | 2760   | Dayler!              | 1.0    | [B] < 1.0            | [B] < 1.0   | 国<1.0       | [B] < 1.0         |
| m & p-Xylene                | 3      | 2760   | Dydri                | 1.0    | B] < 1.0             | [B] < 1.0   | [B] < 1.0.  | [B] < 1.0         |
| o-Xylisine                  | 0      | 2760   | Division 1           | 1.0    | [8] < 1.0            | [B] < 1.0   | [B] < 1.0   | (日)<1.0           |
| Methyl Text-Butyl Ether     | 1      | 2760   | EN/6ri               | 1.0    | [B] < 1.0            | B] < 1.0    | B] < 1.0    | B] < 1.0          |
| Vaph/haiene                 | 0      | 2800   | mp%q                 | 0.10   | < 0.10               | < 0.10      | < 0, 10     | < 0,10            |
| Acenaphthylene              | z      | 2800   | Dis/dua              | 0,10   | < 0.10               | < 0,10      | < 0.10      | < 0.10            |
| Acenaphthene                | 3      | 2800   | mg/kg:               | 0.10   | < 0.10               | < 0,10      | < 0.10      | < 0.10            |
| - Judrene                   | 9      | 2800   | ma/ka                | 0.10   | < 0.10               | < 0.10      | < 0.10      | < 0.10            |
| Phenenthrane                | 2      | 2800   | ma/kg                | 0.10   | < 0,10               | < 0,'0 >    | < 0.10      | < 0.10            |
| Anthracehor                 | 3      | 2800   | mg/kg                | 0.10   | < 0.10               | < 0,10      | < 0.10      | < 0.10            |
| Fluoranthene                | 9      | 2800   | mg/kg                | 0.10   | < 0.10               | < 0.10      | < 0.10      | < 0.10            |
| Pyiene                      | 2      | 2800   | ma/kg                | 0.10   | < 0,10               | 0,10 >      | < 0.10      | × 0.10            |
| Benzo[ejanthracene          | 2      | 2800   | mg/kg                | 0,10   | < 0.10               | < 0.10      | < 0.40      | < 0.10            |
| Chrystens                   | 5      | 2600   | mg/kg                | 0.10   | < 0.10               | < 0, 0      | < 0.10      | < 0.10            |
| Benzo(b)fluccardhene        | Þ      | 2600   | ma/kg                | 0.10   | < 0.10               | 0,0 >       | < 0.10      | < 0.10            |
| Benzo(k//uoranthene         | 2      | 2800   | mg/kg                | 0.10   | < 0.10               | < 0.50      | < 0.10      | < 0.10            |
| Benzo(a pyrans              | 0      | 2800   | malka                | 0.10   | < 0.10               | < 0.10      | < 0.10      | < 0.10            |
| Indena(1,2,3-c,d)Pyrene     | 2      | 2600   | make                 | 0.10   | < 0.10               | < 0.10      | < 0.10      | < 0.10            |
| Dibenz(a,h)Anthracene       | z      | 2800   | malkg                | 0.10   | < 0.10               | < 0.10      | < 0.10      | × 0.10            |
| Benzo(ghui)penylene         | 0      | 2800   | mg/kg                | 0.10   | < 0.10               | < 6.10      | < 0.10      | < 0.10            |
| Coronette                   | z      | 2600   | marka                | 0.10   | < 0.10               | < 0.10      | < 0.10      | < 0.10            |
| Tolal Of 17 PAH's           | z      | 2800   | mg/kg                | 2.0    | < 20                 | <20         | <2.0        | ×2.0              |
| PCB 28                      | 0      | 2615   | make                 | 0.010  | < 0.010              | < 0.010     | < 0.010     | < 0.010           |
| PCB 52                      | D      | 2815   | marka                | 0.010  | < 0.010              | < 0.050     | < 0.010     | < 0.010           |
| D/D 0/1404                  | -      | 3046   | 2646 mollen 0.010    | 0000   | A DURING WITH        | 0.000       |             | 100000            |

Page 15 of 46

¥.

## **Chemtest**

#### Soil alle ň

| - 1   |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
| 1     |  |
|       |  |
|       |  |
|       |  |
|       |  |
| CINCD |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
| 21    |  |
| 21    |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

| Project: 21513. Airton Road, Tallaght, Dublin (BMCE) | aht, Dublin (BM | <u>8</u> |                      |               |             |             |             |             |
|------------------------------------------------------|-----------------|----------|----------------------|---------------|-------------|-------------|-------------|-------------|
| Client: IGSL                                         |                 | Cher     | Chemtest Job No.:    | ::oN do       | 19-19643    | 19-18643    | 19-19843    | 19-19643    |
| Quotation No.:                                       | _               | Chemte   | Chemtest Sample ID.: | pie ID.:      | 841075      | 841076      | 841077      | 841078      |
| Order No.:                                           |                 | Clier    | Client Sample Ref    | le Ref        | AABBB1      | A499532     | A456927     | A499929     |
|                                                      |                 | 38       | Semple Location      | Sation        | TPOB        | TPOI        | 1PO9        | 1P09        |
|                                                      | _               |          | Sample               | Sampla Type:  | SOL         | SOIL        | SOIL        | SOIL        |
|                                                      |                 |          | Top Depth            | (E) 45        | 0.50        | 1,00        | 0.50        | 200         |
|                                                      |                 | Bat      | Bottom Depth (m)     | (m):40        | 0.50        | 1.00        | 0.50        | 2,00        |
|                                                      | -               |          | Date Sampled:        | mplect:       | 24-May-2019 | 24-May-2019 | 24-May-2019 | 24-May-2019 |
|                                                      |                 |          | Asbest               | Asbestos Lab: | COVENTRY    | COVENTRY    | COVENTRY    | COVENTRY    |
| Determinand                                          | Accred.         | SOP      | Units                | COD           |             |             |             |             |
| PCB 118                                              | 2               | 2815     | Dividian             | 0,010         | < 0.010     | < 0,010     | < 0.010     | < 0,010 ×   |
| PCB 153                                              | 5               | 2845     | manita               | 01010         | < 0.010     | < 0.010     | < 0.010     | < 0.010     |
| PC8 138                                              | 9               | 2815     | mgNg                 | 010.0         | < 0.010     | < 0.010     | < 0.010 >   | < 0.010     |
| PCB 160                                              | n               | 2815     | 5                    | 010/010/00/05 | < 0.010     | < 0.010     | < 0,010     | < 0.010     |
| Total PCBs (7 Congeners)                             | z               | 2815     |                      | mg/kg 0.10    | < 0,10      | < 0,10      | < 0.10      | < 0,10      |
| Total Disconts                                       | 100             | CLOC-    | ODD address ODDC     | 000           | 0.04        | 10.01       | 10.00       | 10.00       |

#### Chemtest

### Results - Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID:           | 19-19643<br>841051  |         |             |                      | Landnis                 | Landfill Waste Acceptance Criteria<br>Limite                                 | e Critoria                |
|---------------------------------------------------|---------------------|---------|-------------|----------------------|-------------------------|------------------------------------------------------------------------------|---------------------------|
| Sample Ref:<br>Sample Location:<br>Tros Desthins: | 38082<br>8H2<br>100 | ¥(      |             |                      | Inert Waste             | Stable, Non-<br>reactive<br>hazardous<br>waste in non-                       | Hazardous<br>Waste        |
| Bottom Depth(m)<br>Sampling Date:                 | 0                   |         |             |                      | Landfill                | hazardeus<br>Landfill                                                        | Illibuari                 |
| Determinand                                       | GOP                 | Accred. | Units       |                      |                         |                                                                              |                           |
| Fotal Organic Carbon                              | 2020                | -       | 92          | 0.40                 | 0                       | 5                                                                            |                           |
| Loss On Ignition                                  | 2610                | 2       | 25          | 53                   | 1                       | 1                                                                            | 10                        |
| Total BTEX                                        | 2760                | n       | mg/log      | < 0.010              | 9                       | 1                                                                            | t                         |
| Total PCBs (7 Congeners)                          | 2016                | 2       | mg/kg       | < 0,10               | -                       | +                                                                            | 7                         |
| TPH Total WAC (Minanal Oil)                       | 2670                | n       | malita      | < 10                 | 600                     | +                                                                            | 1                         |
| Total (Of 17) PAHs                                | 2800                | z       | mang        | × 2.0                | 100                     | 14                                                                           |                           |
| pH                                                | 2010                | n       |             | 8.8                  | 4                       | 92                                                                           | 1                         |
| Acid Neutralisation Capacity                      | 2016                | N       | moVkg       | 0.095                | 1                       | To svaluate                                                                  | To evaluate               |
| Eluato Analysis                                   |                     |         | 10:1 Eluate | 10:1 Eluate<br>malka | Limit value:<br>using E | Limit values for compliance leaching test<br>using BS EN 12457 at LIS 10 Ukp | eaching test<br>\$ 10 Ukg |
| Arearit                                           | 1450                | ,       | < 0.0010    | < 0.050              | 0.5                     | 2                                                                            | 26                        |
| Bartum                                            | 1460                | 0       | < 0.0010    | <0.50                | 20                      | 100                                                                          | 300                       |
| Cadmium                                           | 1450                | n       | < 0.00010   | <0.010               | 0.04                    | 1                                                                            | 9                         |
| Chiomum                                           | 1400                | 2       | < 0.0010    | < 0.050              | 0.5                     | 10                                                                           | 70                        |
| Copper                                            | 1450                | n       | < 0.0010    | < 0.050              | 2                       | 50                                                                           | 100                       |
| Morcury                                           | 1450                | n       | < 0.00050   | < 0.0050             | 0.01                    | 0.2                                                                          | ei,                       |
| Malybdenum                                        | 1450                | 0       | 0.0020      | < 0.050              | 0.5                     | 10                                                                           | 30                        |
| Nickel                                            | 1450                | 0       | < 0.0010    | < 0.050              | 0.4                     | 10                                                                           | 40                        |
| Load                                              | 1450                | 0       | < 0.0010    | <0.010               | 0.5                     | 10                                                                           | 93                        |
| Antimony                                          | 1450                | n       | < 0.0010    | ×0,010               | 0.05                    | 0.7                                                                          | sin .                     |
| Selenium                                          | 1450                | 0       | < 0.0010    | < 0.010              | 0.1                     | 0.5                                                                          | 2                         |
| Znc                                               | 1450                | n       | < 0.0010    | < 0.50               | 4                       | 50                                                                           | 200                       |
| Chlorida                                          | 1220                | 0       | 3.5         | 35                   | 800                     | 15000                                                                        | 25000                     |
| Fluoride                                          | 1220                | 0       | 0.79        | H.1                  | 10                      | 150                                                                          | 800                       |
| Suppose                                           | (220                | 0       | 2.3         | 23                   | 1000                    | 20000                                                                        | 20000                     |
| Total Dissofred Solids                            | 10201               | z       | 22          | 530                  | 4000                    | 00000                                                                        | 100000                    |
|                                                   |                     |         | - N BARN    | 1000                 |                         | and the second second                                                        |                           |

rtionkg Uny mass of les Moisture (%)

Solid Inform

0.090

Waste Acceptance Criteria

hing test results) must not be used for hazardous waste classification purposes. This analysis is only applicable to and does not give any indication as to whether's waste may be hazardous or non-hazardous. 1 Alle Landfill WAC analysis (specifical for hazardous waste landfill acc

Page 17 of 46

#### 

### Results - Single Stage WAC

| 97 2315<br>2417 468<br>1.00<br>1.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |             |             | Landilli     | LandIIII Waste Acceptance Criteria<br>LandIII Waste Acceptance Criteria | e Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|-------------|--------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alfon: BH3 (100 BH3 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |             |             |              | Carbito Man-                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BH3 100 100 1.000 1.000 1.000 1.000 1.000 1.000 2.000 1.000 2.000 1.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |             |             |              | reactive                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,00 |         |             |             |              | Provinced on the                                                        | Herandonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Address (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             |             | Van Andrews  | COMPANY AND                         | CITY OF CALL O |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9     |             |             | Inert Wate   | -uou ui atsaw                                                           | Waster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 31.469         31.469         4019           uthern         31.469         4019           Opperters)         2815         2815           Opperters)         2815         2815           Opperters)         2816         2815           Opperters)         2816         2816           Opperters)         2816         2816           Opperters)         2816         2816           Opperters)         2816         2816           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480         1480         1480           1480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |             |             | Landfill     | hazardous                                                               | Inbas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 800<br>2810<br>2810<br>2810<br>2810<br>2810<br>2810<br>2810<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |             |             |              | Landfill                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actred. | Units       |             |              |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0       | ×           | 0%0         | 0            | 52                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Я A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0       | *           | 2.1         | ×            | 1                                                                       | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1       | maña        | < 0.010     | 10           |                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,       | maña        | <0.10       |              | 1                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,       | marka       | < 10        | 800          |                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N       | maña        | +20         | 100          | 1                                                                       | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |             | 5.7         | 1            | 95                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N       | motha       | 0.097       | ,            | To evaluate                                                             | To evaluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 10-1 Eluato | 10:1 Elunte | Limit values | Limit values for compliance leaching test                               | eaching test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Ingen       | tng/kg      | Unsing E     | using BS EN 12467 at L/S 10 likg                                        | 5-10 Ukg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0.0010    | < 0,050     | 0.5          | 2                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0.0010    | < 0.50      | 50           | 100                                                                     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0/00010   | < 0.010     | 0,04         | -                                                                       | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0.0010    | < 0.050     | 0.5          | 10                                                                      | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n       | < 0.0010    | < 0.050     | 2            | 50                                                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0.00050   | < 0.0050    | 10/0         | 02                                                                      | e4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | 0.0016      | < 0.050     | 0.5          | 10                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + n     | < 0.0010    | < 0.050     | 9.4          | 10                                                                      | 6 <del>4</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0.0010    | < 0.010     | 0.5          | 10                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n       | < 0.0010    | < 0,010     | 90'0         | 2'0                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0.0010    | < 0,010     | 0.1          | 0.5                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n       | < 0.0010    | < 0.50      | 4            | 50                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,       | 1.5         | 92          | 900          | 15000                                                                   | 25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       | 0.19        | 61          | 10           | 150                                                                     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       | 1.1         | 44          | 1000         | 20000                                                                   | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N       | 57          | 570         | 4000         | 60000                                                                   | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       | < 0.030     | < 0.30      | 1            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Disanved Organic Carbon 1610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0       | 3.7         | c.50        | 560          | 800                                                                     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Scalled Indonensitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       |             |             |              |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Provinces of test motionity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T       |             |             |              | i                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |             |             |              |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 $\mathbf{i}_{i}$ 

a.

Waste Acceptance Criteria rieture (%)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

ct 21813

### Results · Single Stage WAC

| Chemtest Job Ne:<br>Chemtest Sample ID: | 19-19643<br>841054 |         |             |             | Illipuer                      | Landfill Waste Acceptance Griteria<br>Limits | e Griteria   |
|-----------------------------------------|--------------------|---------|-------------|-------------|-------------------------------|----------------------------------------------|--------------|
| Sample Ref:<br>Sample ID:               | 10696              |         |             |             |                               | Stable, Non-<br>reactive                     |              |
| Sample Location:                        | BH4                |         |             |             | The state of the state of the | hazardous                                    | Farardous    |
| Top Depth(m):                           | 1.00               |         |             |             | Inert Waste                   | waste in non-                                | Watto        |
| Bottom Depth(m):<br>Samoling Date:      | 30-Msw-2019        |         |             |             | Landfill                      | hazardous                                    | Landill      |
| Determinand                             | SOP                | Accred. | Units       |             |                               |                                              |              |
| Total Organic Carbon                    | 2625               | 0       | *           | た中の         | m                             | 0                                            | ¢            |
| Loss Or Ignition                        | 2610               | 0       | æ           | 2.4         | 4                             | t                                            | 10           |
| Total BTEX                              | 2760               | n       | mg/kg       | <0.010      | 9                             | 1                                            |              |
| Total PCBs (7 Congesters)               | 2815               | n       | mp/kg       | < 0.10      | -                             | 1                                            | 4            |
| TPH Total WAC (Mnerst Oil)              | 2670               | 0       | mg/kg       | 01 ×        | 2005                          | 4                                            |              |
| Total (Of 17) PAHs                      | 2800               | N       | maha        | <2.0        | 100                           | 1                                            | E            |
| pH                                      | 2010               | 0       |             | 8.7         | 4                             | Đ.                                           | +            |
| Acid Neutralisation Capacity            | 2015               | N       | molMg       | 0.099       | 4                             | To evaluate                                  | To evaluate  |
| Eluato Analysis                         |                    |         | 10:1 Eluate | 10:1 Ehuste | Limit value:                  | Limit values for compliance leaching test    | eaching test |
|                                         |                    |         | 10u         | THE DEC     | a gallau                      | USING ES EN 1265/ at L/S 101/KG              | BAILOLS      |
| Arsenic                                 | 1450               |         | < 0.0010    | ×10.050     | 0.5                           | 2                                            | ц            |
| Banum                                   | 1450               | 0       | < 0.0010    | < 0.50      | 20                            | 100                                          | 300          |
| Cadmium                                 | 1450               | 0       | < 0.00010   | < 0.010     | 0:04                          | 1                                            | 10           |
| Chromium                                | 1450               | n       | < 0,0010    | < 0.050     | 0.5                           | 10                                           | 20           |
| Copper                                  | 1450               |         | < 0.0010    | < 0.060     | 2                             | 8                                            | 1001         |
| Marcury                                 | 1450               | 1       | < 0.00050   | < 0.0060    | 0.01                          | 0.2                                          | 2            |
| Molybdenum,                             | 1450               | n       | 0.0040      | < 0,050     | 0.5                           | 10                                           | 8            |
| Nickut                                  | 1450               | n       | < 0.0010    | < 0.050     | 0.4                           | 10                                           | 40           |
| Load                                    | 1450               | n       | < 0.0010    | < 0.010     | 0.5                           | 10                                           | 60           |
| Antenny.                                | 1450               | n       | < 0.0010    | <0.010      | 0.06                          | 0.7                                          | 60           |
| Selanium                                | 1450               |         | < 0.0010    | <0.010      | 0.1                           | 0.5                                          | 4            |
| Zina                                    | 1450               | n       | < 0.0010    | × 0.50      | я                             | 50                                           | 200          |
| Chloride                                | 1220               | 5       | 1.1         | 11          | 800                           | 15000                                        | 25000        |
| Fluoride                                | \$220              | n       | 0.15        | 1.5         | 10                            | 150                                          | 600          |
| Suphate                                 | 1220               | n       | 1.9         | 19          | 1000                          | 20000                                        | 50010        |
| Total Dissolved Solids                  | 1020               | z       | 40          | 490         | 4000                          | 60000                                        | 100000       |
| Phenol Index                            | 1920               | n       | < 0.030     | + 0.30      | -                             |                                              |              |
| Deschard Ontanic Carbon                 | 1610               | 5       | 3.5         | < 50        | 800                           | 800                                          | 1000         |

j

Waste Acceptance Criteria

Solid Information Dry mass of test portion/kg Motsure (%) Landfill WAC analysis (specifically feacthing test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste may be hazardous or non-hazardout.

à.

0.080

Page 19 of 46

#### Chemtest

### Results · Single Stage WAC

| Chemtest Jab Na; 19643      | 19-19643    |         |             |              | Landfill     | Landilli Waste Acceptance Criteria        | e Criteria   |
|-----------------------------|-------------|---------|-------------|--------------|--------------|-------------------------------------------|--------------|
| Chemiest Sample ID:         | 841055      |         |             |              |              | Limits                                    | COMPLEX.     |
| Sample Ref:<br>Sample ID:   | 11401       |         |             |              |              | Stable, Non-<br>seactive                  |              |
| Estrate Landlan             | plus        |         |             |              |              | home                                      | Management   |
| Ton Denth(m)-               | 4 00        |         |             |              | inore Wineto | tesete in non-                            | Winete       |
| Bottom Death(m)             | 1.00        |         |             |              | Iandfill     | hazardous                                 | Landfill     |
| Sampling Date:              | 29-May-2019 |         |             |              |              | Landfill                                  |              |
| Determinand                 | SOP         | Accred. | Units       |              |              |                                           |              |
| Total Organic Carbon        | 2625        | 0       | 2           | 0.59         | -            | -0                                        | 10           |
| Loss On Ignition            | 2610        | 0       | N.          | 3.1          | 1            | t                                         | 10           |
| Total BTEX                  | 2760        | 0       | molika      | < 0.010      | 9            | 1                                         | ı            |
| Total PCBs (7 Congeners)    | 2815        |         | malka       | < 0.10       | -            | ı                                         |              |
| TPH Total WAC (Meetal Or)   | 2670        |         | maka        | c 10         | 500          | 1                                         | 1            |
| Total (OF 17) PAHs          | 2800        | N       | mp/ka       | <20.         | 100          | -                                         | ¢            |
| Ho                          | 2010        |         |             | 8.6          | 1            | 8                                         | 1            |
| Add Neutralisation Capacity | 2015        | 2       | mol/kg      | 0.049        | 1            | To evaluate                               | To evaluate  |
| Eluate Analysis             |             |         | 10:1 Eluate | 1011 Eluator | Limit value  | Limit values for compliance leaching test | eaching test |
|                             |             |         | mg/l        | THO/KD       | a Suisn      | uning BS EN 12457 at L/S 10 mg            | 5 10 Mg      |
| Arsenio                     | 1450        | 0       | < 0.0010    | <0.050       | 0.5          | 2                                         | 25           |
| Bartum                      | 1450        | 0       | < 0.0010    | < 0.50       | 20           | 100                                       | 300          |
| Cadmium                     | 1450        | 0       | < 0.00010   | <0.010       | 0:04         | -                                         | 5            |
| Chramium                    | 1450        | 0       | < 0.0010    | < 0.050      | 0.5          | 10                                        | 20           |
| Copper                      | 1450        | 0       | < 0.0010    | <0.050       | N            | 50                                        | 100          |
| Maroury                     | 1450        | 0       | < 0.00080   | < 0.0050     | 0.01         | 0.2                                       | 2            |
| Malybdenum                  | 1450        | n       | < 0.0010    | < 0.050      | 0.5          | 04                                        | 30           |
| Nicross                     | 1450        | 0       | < 0.0010    | < 0.050      | 0.4          | 10                                        | 04           |
| Lead                        | 1450        | 0       | < 0.0010    | <0.010       | 0.5          | 10                                        | 90           |
| Antimony                    | 1450        | 0       | < 0.0010    | <0.010       | 0.05         | 0.7                                       | ŝ            |
| Selenium                    | 1450        | 0       | < 0.0010    | < 0.010      | 0.1          | 0.5                                       | 2            |
| Zino                        | 1450        | n       | < 0.0010    | < 0.50       | +            | 50                                        | 200          |
| Chioride                    | 1220        | 0       | 4,0         | 40           | 800          | 15000                                     | 25000        |
| Fluoride                    | 1220        | 0       | 0.19        | 1.9          | 10           | 150                                       | 500          |
| Sulphate                    | 1220        | n       | 1.21        | 12           | 1000         | 20000                                     | 50000        |
| Total Dissolved Selids      | 1020        | N       | 52          | 520          | 4000         | 80000                                     | 100000       |
| Phenol Index                | 1920        | 0       | < 0.030     | < 0.30       | -            | 4                                         | *            |
| Dissolved Organic Carbon    | 1610        | 0       | 4.8         | < 50         | 500          | 800                                       | 1000         |
|                             |             |         |             |              |              |                                           |              |
| Solid Information           |             | _       |             |              |              |                                           |              |
| Dry mass of test portionikg | 0.090       |         |             |              |              |                                           |              |

Molsture (%)

5.8

Waste Acceptarce Criteria

Lundril WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only spplicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

21813

### Results - Single Stage WAC

| Chemtest Jab No:<br>Chemtest Sample ID: | 19-19643<br>841066  |        |             |             | Tandfill                                                                                                        | Landfill Waste Acceptance Criteria<br>Limits                                  | e Criteria   |
|-----------------------------------------|---------------------|--------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------|
| Sumple Ref:<br>Sumple ID:               | 114409              |        |             |             |                                                                                                                 | Stable, Non-<br>reactive                                                      |              |
| Sample Location:                        | 69-481              |        |             |             | The second se | hazardous                                                                     | Hazardous    |
| Top Depth(m):                           | 1.00                |        |             |             | Inert Waste                                                                                                     | waste in non-                                                                 | Waste        |
| Bottom Depth(m):<br>Samelino Date:      | 1.00<br>30-Min-2019 |        |             |             | Landilli                                                                                                        | hazardous                                                                     | Landfill     |
| Determinand                             | SOP                 | Accred | Unita       |             |                                                                                                                 |                                                                               |              |
| Total Organic Camon                     | 222                 | n      | 2           | 0.44        |                                                                                                                 | 5                                                                             | 9            |
| Loss On Ignition                        | 2810                | 0      | 2           | 2.6         | 1                                                                                                               | 1                                                                             | 10           |
| Total BTEX                              | 2700                | n      | marka       | < 0.010     | g                                                                                                               |                                                                               | t            |
| Total PCBs (/ Corgeners)                | 2816                | n      | 000u        | <0.10       | 1                                                                                                               | 4                                                                             | 4            |
| TPH Total WAC (Mineral Oil)             | 2870                | n      | Day but     | ×10         | 200                                                                                                             | - 10                                                                          | 3            |
| Total (Of 17) PAH's                     | 2800                | N      | mgAgg       | +20         | 100                                                                                                             | 10                                                                            | t            |
| H                                       | 2010                | n      |             | 8.7         | 4                                                                                                               | 36                                                                            | 1            |
| Acid Neutralisation Capacity            | 2015                | N      | matria      | 0.17        | 1                                                                                                               | To evaluate                                                                   | To eveluate  |
| Etuate Analysis                         |                     |        | 10:1 Eluato | 10:1 Eluate | Lindt values                                                                                                    | Linit values for compliance feaching test<br>union BS PN 52417 at LS 10 liter | caching test |
| Areartic                                | 1460                | -      | < 0.0010    | < 0.050     | 50                                                                                                              | 2                                                                             | 26           |
| Barum                                   | 1450                | 0      | 0.0012      | <0.50       | 20                                                                                                              | 100                                                                           | 300          |
| Cadmium                                 | 1450                | n      | < 0.00010   | < 0.010     | 0.04                                                                                                            | +                                                                             | st.          |
| Chromium                                | 1450                | n      | < 0.0010    | < 0.050     | 0.0                                                                                                             | 10                                                                            | 20           |
| Copper                                  | 1480                | n      | < 0.0010    | < 0.050     | 2                                                                                                               | 20                                                                            | 1005         |
| Morcury                                 | 1450                | n      | <0.00050    | < 0.0060    | 0.01                                                                                                            | 0.2                                                                           | Đ,           |
| Molybdsnum                              | 1460                | n      | < 0.0010    | < 0.050     | 0.5                                                                                                             | 10                                                                            | 30           |
| Nckel                                   | 1450                |        | < 0.0010    | < 0:050     | 0.4                                                                                                             | 10                                                                            | 69           |
| Lead                                    | 5450                | 0      | < 0.0010    | < 0.050     | 0,5                                                                                                             | 10                                                                            | 8            |
| Anternotiv                              | 1450                |        | < 0.0010    | <0.010      | 0.06                                                                                                            | 0.7                                                                           | 10           |
| Selenium                                | 5450                | n      | < 0.0010    | < 0,010     | 0.1                                                                                                             | 0,5                                                                           | 4            |
| Zine                                    | 1450                |        | < 0.0010    | < 0.50      | 4                                                                                                               | 20                                                                            | 200          |
| Chloride                                | 1220                | 0      | <1.0        | < 10        | 800                                                                                                             | 15000                                                                         | 25000        |
| Fluoride                                | 1220 -              | 0      | 0.17        | 1.7         | 10                                                                                                              | 150                                                                           | 500          |
| Suphate                                 | 1220                | 0      | 3.1         | 31          | 1000                                                                                                            | 20000                                                                         | 00000        |
| Total Discolved Solids                  | 1020                | N      | 2           | 530         | 4000                                                                                                            | 60000                                                                         | 100000       |
| Phanol Index                            | 1920                | n      | < 0.030     | < 0.30      | -                                                                                                               |                                                                               |              |
| Dissolved Organic Carbon                | 1610                | 0      | 50          | 50          | 500                                                                                                             | 800                                                                           | 1000         |

Waste Acceptance Criteria

Stoffel Information Dry mass of test portion/kg Motehure (%)

0.090

Landfill WAC analysis (specifically leaching test resuks) must not be used for hazardous waste classification purposes. This arelysis is only applicable for hazardous waste classification purposes. This arelysis is only applicable for hazardous waste may be hazardous or non-hazardous.

Page 21 of 46

#### Chemtest The Hord of the State

### Results - Single Stage WAC

| Chemitest Sample (D:<br>Sample Ref:<br>Sample ID:<br>Sample ID:<br>Sample Location:<br>Top Depting<br>Sampling Date:<br>Determinand<br>Total Organic<br>Loss On fightion | C+00:-R1    |         |             |             | Landill         | Landilli Waste Acceptance Orberia         | e Crterta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-------------|-------------|-----------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Ref:<br>Sample Ref:<br>Bample Los<br>Top Depthm:<br>Top Depthm:<br>Sampling Date:<br>Tetal Organe Carton<br>Tetal Organe Carton                                   | 841057      |         |             |             |                 | Limits                                    | and the second s |
| Sampte a constant:<br>Sampte Location:<br>Top Depthm:<br>Bootom Depth(m):<br>Sampting Date:<br>Determinande:<br>Total Organic Carton<br>Loss On Sprinco                  | 114415      |         |             |             |                 | Stable, Non-                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Top Depthin):<br>Top Depthin):<br>Botton Dephfin):<br>Sampling Date:<br>Total Organic Carton<br>Loss On Spillion                                                         | 100         |         |             |             |                 | a and a second                            | Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Top Depthym:<br>Samphing Date:<br>Samphing Date:<br>Total Organic Carbon<br>Loss On Sprition                                                                             | 140         |         |             |             | No. Contraction | Pazardous                                 | Mazardous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bottom Depth/m):<br>Sampting Date:<br>Staterminante:<br>Testi Organic Carbon<br>Loss On Aprilion                                                                         | 1.00        |         |             |             | Inert Waste     | waste in non-                             | Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sampling Date:<br>Determinand<br>Total Organic Carton<br>Loss On Ignition                                                                                                | 1,00        |         |             |             | LandRI          | hazardous                                 | Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Determinand<br>Total Organic Carbon<br>Loss On Ignilion                                                                                                                  | 27-May-2019 |         |             |             |                 | Landfill                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Organic Carton<br>Loss On Ignition                                                                                                                                 | SOP         | Accred. | Units       |             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Loss On Ignition                                                                                                                                                         | 2625        | 0       | 3           | 0.33        |                 | 5                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                          | 2610        | 3       | 25          | 2.1         |                 | 1                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Total BTEX                                                                                                                                                               | 2760        | 0       | mg/kg       | [B] < 0.01D | -               | *                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total PCBs (7 Congenera)                                                                                                                                                 | 2815        | 0       | mg/kg       | <0.10       | +               | 1                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TPH Total WAC (Mnecal OI)                                                                                                                                                | 2670        | 9       | Dalipmi     | 用21         | 200             | 1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total (Of 17) PAH's                                                                                                                                                      | 2600        | z       | ma/ka       | 0Z.x        | 100             | ;                                         | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H                                                                                                                                                                        | 2010        | 2       |             | 8.8         | 1               | 9~                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Acid Neutralisation Capacity                                                                                                                                             | 2016        | Z       | maWka       | 0.16        | 1               | To evaluate                               | To evaluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Eluate Analysis                                                                                                                                                          |             |         | 10:1 Eluato | 10:1 Eluate | Limit value     | Limit values for compliance leaching test | eaching test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                          |             |         | mail        | malka       | uning E         | uning BS EN 12457 at L/S 10 Mg            | 5 10 Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mrsenic                                                                                                                                                                  | 1450        | 0       | < 0.0010    | < 0.050     | 0.5             | 54                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Bañum                                                                                                                                                                    | 1450        | n       | < 0.0010    | < 0.50      | 30              | 100                                       | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cadmium                                                                                                                                                                  | 1450        | n       | < 0.00010   | < 0.010     | 0.04            | 1                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chromium                                                                                                                                                                 | 1450        | n       | < 0.0010    | < 0.050     | 90              | 10                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Copper                                                                                                                                                                   | 1450        | n       | < 0,0010    | < 0:050     | 2               | 50                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mercury                                                                                                                                                                  | 1450        | n       | < 0.00060   | < 0.0050    | 0,01            | 0.2                                       | the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Molybdenum                                                                                                                                                               | 1450        | n       | 0:0012      | <0.050      | 0.5             | 10                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| McRei                                                                                                                                                                    | 1450        | n       | < 0.0010    | < 0.050     | 0.4             | 10                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lead                                                                                                                                                                     | 1450        | n       | < 0.0010    | < 0.010     | 0.5             | 10                                        | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Antimory                                                                                                                                                                 | 1450        | 5       | < 0.0010    | < 0.010     | 0.06            | 0.7                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Selenium                                                                                                                                                                 | 1450        | n       | < 0.0010    | < 0.050     | 0.1             | 0.5                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Znc                                                                                                                                                                      | 1450        | n       | < 0.0010    | <0.50       | +               | 50                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ohlorida                                                                                                                                                                 | 1220        | n       | 11          | 11          | 600             | 15000                                     | 25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Flucride                                                                                                                                                                 | 1220        | •       | 0.27        | 2.7         | 10              | 150                                       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Suthhete                                                                                                                                                                 | 1220        | 0       | 2.4         | 24          | 1000            | 2000                                      | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fotal Dissolved Solids                                                                                                                                                   | 1020        | N       | 97          | 090         | 4000            | 60000                                     | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Phenol Index                                                                                                                                                             | 1920        | 0       | × 0,030     | < 0.30      | -               |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dissolved Organic Carbon                                                                                                                                                 | 1610        | 0       | 4,1         | < 50        | 2005            | 600                                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                          |             |         |             |             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solid Information                                                                                                                                                        |             |         |             |             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dry mass of test portion/kg                                                                                                                                              | 0.050       |         |             |             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moistum (%)                                                                                                                                                              | ÷           |         |             |             |                 |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Waste Acceptance Criteria

Landfill WAC antitysts (specifically leaching test results) must not be used for hazarious waste classification purposes. This analysis is only applicable for bazaridous waste landfill acceptance and does not give any indication as to whether a waste may be hazaridous or non-hazardous.

#### Chemtest Tranget community in trainer states

### Results - Single Stage WAC

| Chemtest Job Nc:<br>Chemtest Sample ID:             | 19-19643<br>641058          |         |             |             | Landfill                | Landfill Wiste Acceptance Criteria<br>Limite | e Crteria    |
|-----------------------------------------------------|-----------------------------|---------|-------------|-------------|-------------------------|----------------------------------------------|--------------|
| Sample Ref:<br>Sample ID:<br>Sample Location:       | 7.00327<br>TP01             |         |             |             |                         | Stable, Non-<br>reactive<br>hazardous        | Pazardou     |
| Top Depth(m):<br>Bottom Depth(m):<br>Sampling Dete: | 0.50<br>0.50<br>27-May-2019 |         |             |             | Inert Waste<br>Landfill | waste in non-<br>huzardous<br>Landfili       | Waste        |
| Determinand                                         | SOP                         | Accred. | Units       |             |                         |                                              | 141          |
| Total Organic Carbon                                | 2625                        | 5       | at.         | 0.29        | m                       | -                                            | 10           |
| Loss On Ignition                                    | 2610                        | 2       | *           | 22          | 1                       | *                                            | 10           |
| Total BTEX                                          | 2760                        | n       | mg/kg       | B] < 0.010  | 9                       | 1                                            | t            |
| Total PCBs (7 Congenera)                            | 2815                        | n       | mana        | < 0.10      | 1                       | 1                                            | 1            |
| TPH Total WAC (Mnensi Oil)                          | 2870                        | n       | mg/kg       | [B] < 10    | 500                     | 1                                            | 1            |
| Totat (Of 17) PAHs                                  | 2600                        | N       | marka       | <2.0        | 100                     | ł                                            | 1            |
| H                                                   | 2010                        | n       |             | 8.8         | 1                       | 36                                           | T            |
| Acid Neutralisation Capacity                        | 2015                        | z       | motha       | 0.092       | +                       | To evaluate                                  | To svalued   |
| Etuate Analysis                                     |                             |         | 10c1 Eluate | 10:1 Eluste | Limit value:            | Limit values for compliance leaching test    | eaching test |
|                                                     |                             |         | mgill       | mglkg       | using E                 | using BS EN 12457 at L/S 10 Mg               | \$ 10 Mg     |
| Areanic                                             | 1450                        | n       | < 0/00/10   | <0.050      | 0.0                     | 2                                            | 99N          |
| Bartum                                              | 1450                        | 9       | 0.0010      | < 0.50      | 20                      | 100                                          | 300          |
| Cadmium                                             | 1460                        | n       | < 0.00010   | < 0.010     | 0.04                    | 1.                                           | 'n           |
| Chromium                                            | 1450                        | n       | < 0,0010    | <0.050      | 0.0                     | 10                                           | 20           |
| Copper                                              | 1450                        | n       | < 0.0010    | <0.050      | 2                       | 20                                           | 100          |
| Marcury                                             | 1450                        | 9       | < 0.00050   | < 0,0050    | 0.01                    | 0.2                                          | 0            |
| Molybdenum                                          | 1450                        | n       | 0,0031      | < 0.050     | 0.5                     | 10                                           | 30           |
| Nicket                                              | 1450                        | n       | < 0.0010    | < 0.050     | 0.4                     | 10                                           | 40           |
| Lesd                                                | 1450                        | n       | < 0.0010    | < 0.010     | 97                      | 10                                           | 8            |
| Anterrony                                           | 1450                        | n       | < 0.0010    | < 0.010     | 90:08                   | 0.7                                          | -            |
| Selenium                                            | 1450                        | n       | <0.0010     | < 0.010     | 0.1                     | 0.5                                          | 2            |
| Zhc                                                 | 1450                        | 0       | < 0.0010    | < 0.50      | 4                       | 50                                           | 200          |

Waste Acceptance Criteria

0:090

Solid Information Dry mass of test portioning Motsture (%)

ed Solids

Landfill VAC analysis (specifically feacthing test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Page 23 of 46

#### 

### Results - Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID:                        | 19-19643            |         |             |             | Landtill     | Landfill Waste Acceptance Griteria<br>Limits           | e Critaria         |
|----------------------------------------------------------------|---------------------|---------|-------------|-------------|--------------|--------------------------------------------------------|--------------------|
| Sample Rof:<br>Sample ID:<br>Sample Location:<br>Top Depth(m): | 1901<br>1,00        |         |             |             | Insert Wasta | Stable, Non-<br>reactive<br>hezardous<br>waste in non- | Hazardous<br>Waste |
| Bottom Depth(m);<br>Sampling Date:                             | 1.00<br>27-May-2019 |         |             |             | Landfill     | Landfill                                               | Illboart           |
| Determinand                                                    | 30P                 | Accred. | Units       |             |              |                                                        |                    |
| Votat Organic Carbon                                           | 2625                | 0       | *           | 620         | 115          | 5                                                      | 9                  |
| Loss On Ignition                                               | 2610                | n       | *           | 22          |              | *                                                      | 10                 |
| Total BTEX                                                     | 2760                | 0       | marka       | [B] < 0.010 | 9            | ł                                                      | t                  |
| Total PCBs (7 Corgeners)                                       | 2815                | 0       | mawa        | <0.10       |              |                                                        | x                  |
| TPH Total WAC (Mineral Oil)                                    | 2670                | 0       | make        | [B] < 10    | 500          | +                                                      | 1                  |
| Total (Of 17) PAH's                                            | 2800                | N       | mg/kg       | × 2.0       | 100          | 1                                                      | 1                  |
| pH                                                             | 2010                | 0       |             | 8.8         | 1            | 36                                                     | t                  |
| Acid Neutralisation Capacity                                   | 2015                | N       | methg       | 0,22        | *            | To evaluate                                            | To eveningto       |
| Etuate Analysis                                                |                     |         | 10:1 Eluate | 10:1 Elunte | Limit values | Umit values for compliance leaching test               | leaching test      |
|                                                                | 1000                |         | mg/l        | mg/kg       | B grileu     | using BS EN 12457 at L/S 10 likg.                      | 5 10 l/kg          |
| Arsenic                                                        | 1450                |         | < 0.0010    | <0.050      | 0.0          | 2                                                      | 25                 |
| Barium                                                         | 1450                | 0       | < 0.0010    | < 0.50      | 20           | 100                                                    | 300                |
| Cadmium                                                        | 1450                | 0       | < 0.00010   | < 0.010     | 0.04         | -                                                      | ja                 |
| Chromium                                                       | 1450                | n       | < 0.0010    | < 0.050     | 0.5          | 10                                                     | 20                 |
| Copper                                                         | 1450                | n       | <0.0010     | < 0,050     | 2            | 8                                                      | 100                |
| Mercury                                                        | 1450                | n -     | < 0,00050   | < 0.0060    | 0.01         | 0.2                                                    | N                  |
| Mohbdemum                                                      | 1450                | 0       | 0.0039      | < 0,050     | 0.5          | 10                                                     | 8                  |
| Nickel                                                         | 1450                | 0       | < 0.0010    | < 0.050     | 0.4          | 4                                                      | 40                 |
| Lesd                                                           | 1450                | n       | < 0.0010    | < 0.010     | 0.5          | 10                                                     | 8                  |
| Antimany                                                       | 1450                | 0       | < 0.0010    | < 0.010     | 0,05         | 0.7                                                    | 10                 |
| Selenium                                                       | 1450                | 0       | < 0.0010    | < 0.010     | 0.1          | 0.5                                                    | 1                  |
| Zina                                                           | 1450                | 0       | < 0.0010    | < 0.50      | 4            | 50                                                     | 200                |
| Chicode                                                        | 1220                | 0       | 1.0         | 05          | 008          | 15000                                                  | 25000              |
| Fluoride                                                       | 1220                | 0       | 0.17        | 1.1         | 10           | 150                                                    | 200                |
| Sulphate                                                       | 1220                | n       | 3.4         | Ħ           | 1000         | 20000                                                  | 20000              |
| Total Disectived Solids                                        | 1020                | z       | 8           | 200         | 4000         | 60000                                                  | 100000             |
| Phanal Index                                                   | 1920                | n       | < 0.030     | < 0.30      |              | *                                                      | •                  |
| Dissolved Organic Carbon                                       | 1610                | 0       | 3.9         | <50         | 500          | 800                                                    | 1000               |
|                                                                |                     |         |             |             |              |                                                        |                    |
| Solid Information                                              |                     | _       |             |             |              |                                                        |                    |
| Dry mass of test prytioniko                                    | 0:030               |         |             |             |              |                                                        |                    |

Moisture (%)

a,

Waste Acceptance Criteria

Landfill WAC anistysis (specifically leaching test results) must not be used for hazarious waste classification purposes. This analysis is only applicable for hazarious waste riay be hazarious or non-hazarious.

#### Chemtest

### Results - Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID:                                                           | 19-19643<br>841061                              |        |             |             | Landen                   | Landfill Waste Acceptance Griteria<br>Limits                                   | e Critoria                     |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------|--------|-------------|-------------|--------------------------|--------------------------------------------------------------------------------|--------------------------------|
| Bample Ref.<br>Sample ID:<br>Sample Location:<br>Top Depth(m);<br>Sampling Deta:<br>Samming Deta: | AA113609<br>TP02<br>0.50<br>0.50<br>27-May-2019 |        |             |             | Insert Waste<br>Landfill | Stable, Non-<br>reactive<br>hazardous<br>waste in non-<br>hazardous<br>Landfit | Hazardous<br>Waste<br>Landfilt |
| Determinand                                                                                       | sop                                             | Accred | Units       |             |                          |                                                                                |                                |
| Total Organic Carbon                                                                              | 2625                                            | n      | *           | 0.34        | 10                       | -                                                                              | 1D                             |
| Loss On Ignition                                                                                  | 2610                                            | 0      | #           | 23          |                          | 1                                                                              | 101                            |
| Total BTEX                                                                                        | 2760                                            | 0      | maña        | [3] < 0.010 | ġ                        | r                                                                              | I                              |
| Total PCBs (7 Cangeners)                                                                          | 2815                                            | n      | marka       | < 0.10      | -                        | 1                                                                              | 3                              |
| TPH Total WAC (Mineral OI)                                                                        | 2670                                            | n      | maña        | 間<10        | 000                      | I                                                                              | 1                              |
| Total (Df 17) PAHs                                                                                | 2600                                            | N      | manua       | < 2.0       | 100                      | Ē                                                                              | 1                              |
| PH                                                                                                | 2010                                            | n      |             | 8.8         | 1                        | 26                                                                             | 1                              |
| Acid Neutralisation Capacity                                                                      | 2015                                            | N      | molika      | 0.098       | +                        | To evaluate                                                                    | To evaluate                    |
| Eluate Analysia                                                                                   |                                                 |        | 10:1 Eluate | 10:1 Eluste | Limit value<br>using 8   | Limit vatues for compliance leaching test<br>using BS EN 12457 at LIS 10 like  | eaching test<br>5 10 Med       |
| Research                                                                                          |                                                 |        | 10,000      | 10000       |                          |                                                                                | and a second                   |
| PH BOIH                                                                                           | 0010                                            |        | A MANUAL    | ADA A       | 10                       | 100                                                                            | 500                            |
| conum<br>* * * * *                                                                                | 1011                                            |        | 120/0       | non v       | 10                       | M                                                                              | NOC N                          |
| Cedmum                                                                                            | 3490                                            |        | < 0,10010   | nuns -      | 070                      |                                                                                | •                              |
| Chromum -                                                                                         | 1490                                            |        | < 0.0010    | <0,000      | Q'0                      | 0                                                                              | 2                              |
| Capper                                                                                            | 3450                                            | n      | < 0.0010    | <0.050      | 2                        | 8                                                                              | 100                            |
| Mercury                                                                                           | 1450                                            | n      | < 0.00050   | < 0.0050    | 0.01                     | 0.2                                                                            | est.                           |
| Mohtdenum                                                                                         | 1450                                            | 2      | 0.0023      | < 0.050     | 0.5                      | 10                                                                             | 8                              |
| Nickel                                                                                            | 5450                                            |        | < 0.0010    | < 0.050     | 40                       | 10                                                                             | 40                             |
| Load                                                                                              | 1450                                            | n      | < 0.0010    | < 0.010     | 0.5                      | 10                                                                             | 8                              |
| Antimony.                                                                                         | 1450                                            | n      | < 0.0010    | <0.010      | 0.06                     | 0.7                                                                            | 0                              |
| Selenium                                                                                          | 1450                                            |        | < 0.0010    | <0.010      | 0,1                      | 0.5                                                                            | 1                              |
| Zhe                                                                                               | 1450                                            |        | <0.0010     | < 0.60      | 4                        | 33                                                                             | 200                            |

ived Solds

18 2 8 8

Solid Informat Dry mass of lev Moishure (%)

0.090

fifcally leaching test resurts) must not be used for hazardous waste classification purposes. This analysis is only applicable I acceptance and does not give any indication as to whether a weste may be hazardous or non-hazardous. Landfill WAC analysis (specificaly lea for hazardous waste landfill acceptar Waste Acceptance Criteria

Page 25 of 46

#### Chemtest

### Results - Single Stage WAC

| Chemtest Jeb No:<br>Chemtest Sample ID:                                                              | 19-19643<br>841082            |         |             |             | Lamfill                 | Lamifili Washe Acceptance Criteria<br>Limits                                    | e Criteria                     |
|------------------------------------------------------------------------------------------------------|-------------------------------|---------|-------------|-------------|-------------------------|---------------------------------------------------------------------------------|--------------------------------|
| Sample Ref:<br>Sample ID:<br>Sample Location:<br>Top Depth(m):<br>Bettom Depth(m)<br>Beampling Date: | TP02<br>2.00<br>2.00<br>2.019 |         |             |             | Inert Waste<br>Lendfill | Stable, Non-<br>reactive<br>hazardous<br>waste in non-<br>hazardous<br>Landfill | Hazardous<br>Waste<br>Landfill |
| Determinand                                                                                          | 50P                           | Accred. | Units       |             |                         |                                                                                 |                                |
| Total Organic Carbon                                                                                 | 2022                          | n       | 8           | 0.64        | -                       | -                                                                               | 10                             |
| Loss On Ignition                                                                                     | 2610                          | 0       | 36          | 1.8         |                         |                                                                                 | 10                             |
| Total BTEX                                                                                           | 2760                          | 0       | maka        | 181 < 0.010 | 9                       | 4                                                                               | a                              |
| Total PCBs (7 Congeners)                                                                             | 28.02                         | 0       | mg/kg       | < 0.10      | 1                       |                                                                                 | *                              |
| TPH Total WAC (Minars! OII)                                                                          | 2870                          | n       | mg9cg       | [B] < 10    | 500                     | 1                                                                               | 4                              |
| Total (OF 17) PAHs.                                                                                  | 2800                          | ×       | Exited 1    | ×20         | 100                     | r                                                                               | F                              |
| HB                                                                                                   | 2010                          | 0       |             | 8.7         | -                       | 9<                                                                              |                                |
| Acid Neutralization Capacity                                                                         | 2016                          | N       | molving     | 0.22        | 1                       | To evaluate                                                                     | To evaluate                    |
| Eluate Analysis                                                                                      |                               |         | 10:1 Eluato | 10:1 Eluato | Limit values<br>uning B | Limit values for compliance leaching test<br>uning BS EM 12457 at LIS 10 Mag    | eaching test<br>5 10 Uku       |
| Arsenic                                                                                              | 1460                          | -       | < 0.0010    | <0.050      | 0.6                     | 2                                                                               | 35                             |
| Barlum                                                                                               | 1450                          | 0       | 0,0012      | <0.50       | 20                      | 100                                                                             | 300                            |
| Cadmium                                                                                              | 1450                          | 0       | < 0.00010   | < 0.010     | 0.04                    | 1                                                                               | 9                              |
| Chromburn                                                                                            | 1450                          | 0       | < 0.0010    | <0.050      | 90                      | 40                                                                              | 02                             |
| Copper                                                                                               | 1450                          | 0       | < 0.0010    | < 0.050     | 2                       | 12                                                                              | 100                            |
| Mercury                                                                                              | 1450                          | 0       | < 0.00060   | < 0.0050    | 0,01                    | 0.2                                                                             | 2                              |
| Molybdenum                                                                                           | 1460                          | 0       | 0.0050      | 0/020       | 20                      | 10                                                                              | 30                             |
| Makel                                                                                                | 1450                          | 0 +     | < 0.0010    | < 0.050     | 0.4                     | 10                                                                              | 40                             |
| Lend                                                                                                 | 1450                          | 0       | < 0.0010    | < 0.010     | 0.5                     | 40                                                                              | 20                             |
| Antimony                                                                                             | 1450                          | 0       | < 0.0010    | < 0.010     | 0.06                    | 0.7                                                                             | ua.                            |
| Salanium                                                                                             | 1450                          | 0       | < 0.0010    | <0.010      | 0.1                     | 0.5                                                                             | 1                              |
| Zinc                                                                                                 | 1460                          | 0       | < 0.0010    | < 0.50      | 4                       | 50                                                                              | 200                            |
| Chiorida                                                                                             | 1220                          | n       | 2.0         | 50          | 800                     | 15000                                                                           | 25000                          |
| Fuoride                                                                                              | 1220                          | n       | 0.18        | 1.8         | 10                      | 150                                                                             | 500                            |
| Sulphete                                                                                             | 1220                          | n       | 2.5         | 21          | 1000                    | 2000                                                                            | 80000                          |
| Total Dissolved Solids                                                                               | 1020                          | Z       | 題           | 990         | 4000                    | 80000                                                                           | 100000                         |
| Phenol Index                                                                                         | 1920                          | n       | × 0.030     | <0.30       | -                       |                                                                                 |                                |
| Dissolved Organic Carbon                                                                             | 1610                          | 2       | 2.7         | < 50        | 500                     | 800                                                                             | 1000                           |

Moleture (%)

2

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

#### Chemtest Transmission

### Results · Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19-19543<br>841063                             |         |             |             | Landal                  | Landfill Wash Acceptance Criteria<br>Limits                                    | e Criteria                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|-------------|-------------|-------------------------|--------------------------------------------------------------------------------|--------------------------------|
| Sample Ref.<br>Sample LD:<br>Sample Location:<br>Top Depth(m);<br>Buntoin Doptie:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A498943<br>TP03<br>0.50<br>0.50<br>24 May 2019 |         |             |             | Inert Waste<br>Landfill | Stable, Non-<br>reactive<br>hazardous<br>waste in non-<br>hazardous<br>Landfil | Hazardoun<br>Waste<br>Landfill |
| Determinand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50P                                            | Accred. | Units       |             |                         |                                                                                |                                |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2626                                           | 0       | 2           | 0.33        | 27                      | 47                                                                             | φ                              |
| Loss On Ignition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2810                                           | 0       | 20          | 2.0         | ,                       | :                                                                              | 10                             |
| Total BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2700                                           | n       | DM/DM       | [B] < 0.010 | 9                       |                                                                                |                                |
| Total PCBs (7 Corgeners)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2816                                           | n       | Dolyperi    | <0.10       | 1                       | z                                                                              | t                              |
| TPHS Total WAC (Mineral OII)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2670                                           | 0       | Dig Ma      | [B] < 10    | 200                     |                                                                                | a                              |
| Total (Of 17) PAH's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2800                                           | N       | mg/kg       | ×20         | 100                     |                                                                                | t                              |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2010                                           | 0       |             | 8.7         | 1                       | ₽.                                                                             | 1                              |
| Acid Neutralisation Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2016                                           | N       | maVka       | 0.17        | 4                       | To evaluate                                                                    | To evaluate                    |
| Eluate Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |         | 10:1 Eluato | 10:1 Eluate | Limit values            | Limit values for compliance leaching test                                      | saching test                   |
| and the second se | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.       |         | mail        | mgika       | uning B                 | uning BS EN 12457 at LIS 10 Ukg                                                | 10 Ukg                         |
| Argentic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450                                           | n       | <0,0010 ×   | < 0.050     | 9.0                     | 2                                                                              | 25                             |
| Barham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1450                                           | 3       | 0.0011      | <0.50       | 20                      | 100                                                                            | 300                            |
| Cadmium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450                                           | n       | < 0.00010   | < 0.010     | 0:04                    | 1                                                                              | in,                            |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450                                           | 0       | < 0.0010    | < 0.050     | 0.5                     | 10                                                                             | 70                             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1450                                           | n       | < 0.0010    | < 0.050     | N                       | 150                                                                            | 100                            |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1450                                           | 0       | < 0.00060   | < 0.0060    | 0.01                    | 0.2                                                                            | 2                              |
| Volybdervum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1450                                           | 0       | 0.0334      | < 0.050     | 0.5                     | 10                                                                             | 30                             |
| Mokel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1450                                           | n       | < 0.0010    | < 0.050     | 0.4                     | 10                                                                             | 8                              |
| , neid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1450                                           | n       | < 0.0010    | < 0.610     | 0.5                     | 10                                                                             | 60                             |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450                                           | 0       | < 0,0010    | < 0.010     | 0.06                    | 0.7                                                                            | 10                             |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450                                           | 0       | < 0.0010    | < 0.010     | 0.1                     | 0.5                                                                            | 7                              |
| 2nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1450                                           | n       | < 0.0010    | <0.50       | 4                       | 20                                                                             | 200                            |
| Chilorida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1220                                           | n       | <1.0        | < 10        | 000                     | 15000                                                                          | 25000                          |
| Flughter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1220                                           | n       | 0.17        | 17          | 10                      | 150                                                                            | 500                            |
| Sulphale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1220                                           | n       | <1.0        | < 10        | 1000                    | 20000                                                                          | 80000                          |
| Total Dissofted Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1020                                           | N       | 48          | 470         | 4000                    | 60000                                                                          | 100000                         |
| Phenol Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1920                                           | n       | × 0.030     | < 0.30      | -                       |                                                                                | •                              |
| Distributi Omanin Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,01                                          | -       | 0 11        | < SD        | RUN                     | the second                                                                     | 1000                           |

Waste Acceptance Criteria

3

Solid Information Dry mass of test portion/log Moisture (%)

0000

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

÷

Page 27 of 46

#### 

## Results - Single Stage WAC

| 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chemtest Job No:<br>Chemtest Sample ID:                                                               | 19-18643<br>841084                             |         |             |                      | LandIII                 | LandIIII Waste Acceptance Criteria<br>Limits                                   | e Criteria                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|-------------|----------------------|-------------------------|--------------------------------------------------------------------------------|--------------------------------|
| SQP*         Accred.         Units         S         0.37         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Ref<br>Sample ID:<br>Sample Location:<br>Top Depth(m):<br>Bottom Depth(m):<br>Barnelines Dete: | AAB9944<br>TPO3<br>1.00<br>1.00<br>24-May-2019 |         |             |                      | Inert Waste<br>Landfill | Stable, Non-<br>reactive<br>hazardous<br>waste in non-<br>hazardous<br>Landfil | Hazardous<br>Waste<br>Landfill |
| 2025         U         %         0.67         3         5           2760         U         mgNg         161-0.00         6         -         -           2760         U         mgNg         161-0.00         6         -         -         -           2760         U         mgNg         161-0.00         6         -         -         -           2760         N         mgNg         161-0.00         6         -         -         -         -           2700         N         mgNg         161-10.00         0.00         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Determinand                                                                                           | SOP                                            | Accred. | Units       |                      |                         |                                                                                |                                |
| 2610         U         %         6.2         -         -           0.         2815         U         mghg         [8]<0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Organic Carbon                                                                                  | 2625                                           | ,       | *           | 0.67                 | 10                      | 10                                                                             | e                              |
| 2750         U         mg/kg         [51:5]         U         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Loss On Ignition                                                                                      | 2610                                           |         | *           | 42                   | 1                       |                                                                                | 10                             |
| (1)         2815<br>(1)         U         mg/ng<br>(1)         (1)         1         -           25010         N         N         mg/ng<br>(1)         (1)         000         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total BTEX.                                                                                           | 2760                                           | 0       | Diffigm     | [B] < 0.010          | 8                       | ,                                                                              | 1                              |
| (J)         2573<br>(2000)         (J)         0904<br>(2000)         (G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Total PCBs (7 Congeneral)                                                                            | 2815                                           | R       | maña        | <0.50                | -                       | 1                                                                              | ĩ                              |
| 2800         N         mplag         <2.0         100         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (TPH Total WAC (Nineral OI)                                                                           | 2670                                           | n       | marka       | 10 < 10              | 500                     |                                                                                | 1                              |
| 2010         U         S3         -         > >6         >         >         > >6           101         N         md/gq         0.8.3         -         To evaluate<br>mark         -         resultate<br>mark         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>Total (Of 17) PAH's</td> <td>2800</td> <td>×</td> <td>mp/kg</td> <td>&lt;20</td> <td>100</td> <td></td> <td>ŧ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total (Of 17) PAH's                                                                                   | 2800                                           | ×       | mp/kg       | <20                  | 100                     |                                                                                | ŧ                              |
| V         2015         N         mol/bg<br>mg/d         0.049         -         Towns for compliance law<br>mg/d         Towns for compliance law<br>mg/d           1450         U         <.0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D-L                                                                                                   | 2010                                           | 9       |             | 6.3                  | T                       | 80                                                                             | ï                              |
| 10:1 Etunits         10:1 Etunits         10:1 Etunits         10:1 Values' fer compliance hash mark mark and set of the set o | Actd Neutralisation Capacity                                                                          | 2015                                           | z       | Emologia    | 0.049                | ,                       | To evaluate                                                                    | To evaluate                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eluate Analysis                                                                                       |                                                |         | 10:1 Ehuate | 10:1 Eluste<br>moles | Limit values<br>using B | s for compliance h<br>15 EN 12457 at L/S                                       | eaching test<br>5.10 Ner       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arsenic                                                                                               | 1460                                           |         | < 0.0010    | < 0.050              | 0.6                     | 2                                                                              | 100                            |
| 4420         U         <         <         0.044         1           14400         U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bartum                                                                                                | 1460                                           |         | 0.0021      | ×0,50                | 20                      | 100                                                                            | 300                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cadmium                                                                                               | 1460                                           | 2       | < 0.00010   | < 0.010              | 0.04                    | +                                                                              | ŝ                              |
| 1450         U         < 0.0010         < 0.050         2         50           1450         U         < 0.01090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chromium                                                                                              | 1450                                           | _       | < 0.0010    | < 0.050              | 0.5                     | 10                                                                             | 20                             |
| 1450         U         < <0.0100         <0.01         0.2           1450         U         0.0011         < <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Capper                                                                                                | 1460                                           | ,       | < 0.0010    | < 0.050              | 0                       | 8                                                                              | 100                            |
| 1450         U         0.0011         < 0.050         0.5         10           1470         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mercury                                                                                               | 1460                                           | 9       | < 0.000000  | < 0.0050             | 0.01                    | 02                                                                             | ¢4                             |
| 1450         U         < 0.0010         < 0.0010         0.4         10           1450         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mohrbanum                                                                                             | 1450                                           | 0       | 0.0011      | < 0.050              | 0.5                     | 10                                                                             | 30                             |
| 1450         U         < 0.0010         < 0.010         0.55         10           14450         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nickel                                                                                                | 1400                                           | n       | < 0,0010    | < 0.050              | 9.4                     | 10                                                                             | 40                             |
| 1450         U         < 0.0010         < 0.010         0.05         0.7           1480         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Load                                                                                                  | 1450                                           | 2       | < 0,0010    | < 0,010              | 0.5                     | 10                                                                             | 80                             |
| H420         U         < 0.0010         < 0.010         0.1         0.5           H450         U         < 0.0610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Antimony                                                                                              | 1460                                           | 2       | < 0,0010    | < 0.010              | 90'0                    | 2'0                                                                            | 41                             |
| 1450         U         < 0.0010         < 0.56         4         50           12200         U         < 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Selenium                                                                                              | 1460                                           | 1       | < 0.0010    | < 0.010              | 0.1                     | 0.5                                                                            | 2                              |
| 1220         U         < 1.0         < 1.0         1500           1220         U         0.0         150         1500           1220         U         0.0         2.0         160         150           1220         U         2.6         2.6         100         2000           1220         U         2.6         2.6         100         2000           1220         U         2.6         2.6         100         2000           1220         U         -0.00         <0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Znc                                                                                                   | 1450                                           | 0       | < 0.0010    | < 0.50               | *                       | 8                                                                              | 200                            |
| 1220         U         0.20         2.0         10         150           1220         U         2.6         2.0         10         150           1220         U         2.6         2.0         100         2000           1220         U         2.6         2.0         4000         2000           1320         U         -         -         -         -           1320         U         -         -         0.0         500         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chloride                                                                                              | t220                                           | 0       | <1.0        | × 10                 | 800                     | 15000                                                                          | 25000                          |
| 1220         U         2.6         2.6         1000         20000           1020         N         520         400         20000           1020         U         -0.030         <0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluoride                                                                                              | 1220                                           | 0       | 0.20        | 2.0                  | 10                      | 150                                                                            | 600                            |
| 10200         N         520         520         600.00         600.00           18200         U         <0.0300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sulphate                                                                                              | t220                                           | 0       | 2.6         | 26                   | 1000                    | 20000                                                                          | 50000                          |
| 1920         U         < 0000         < 0.30         1         =           t610         U         4.0         < 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tatal Dispotred Solids                                                                                | 1020                                           | z       | 1           | 520                  | 4000                    | 00000                                                                          | 100000                         |
| 1610 U 4.0 ≺50 500 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phenol Index                                                                                          | 1920                                           | n       | < 0.030     | < 0.30               |                         |                                                                                |                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Dissolved Organic Carbon</b>                                                                       | 1810                                           | n       | 4.0         | +50                  | 500                     | 800                                                                            | 1000                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                |         |             |                      |                         |                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solid Information                                                                                     |                                                | _       |             |                      |                         |                                                                                |                                |

Molsture (34)

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazaroous waste classification purposes. This analysis is only applicable for hazardous weste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

### Results - Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID:                                                                         | 19-19543<br>841065                             |         |             |             | Landfill               | Landfill Waste Acceptance Criteria<br>Limits                                   | s Criteria                     |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|-------------|-------------|------------------------|--------------------------------------------------------------------------------|--------------------------------|
| Sample Ref:<br>Sample ID:<br>Sample Location:<br>Top Depth(m);<br>Samolina Data:                                | AA69945<br>TP03<br>2.00<br>2.00<br>24-May-2019 | S.      |             |             | Inert Waste<br>Landill | Stable, Non-<br>reactive<br>hazardous<br>wasto in non-<br>hezardous<br>Landfil | Mazardous<br>Waste<br>Landfill |
| Determinand                                                                                                     | SOP                                            | Accred. | I Units     |             |                        |                                                                                |                                |
| Total Organic Carbon                                                                                            | 2833                                           | 0       | 2           | 0.32        | -                      | 5                                                                              | 9                              |
| Loss On Ignition                                                                                                | 2610                                           | 9       | 2           | 2.2         | 1                      | 1                                                                              | 10                             |
| Total BTEX                                                                                                      | 2760                                           | n       | molica      | [B] < 0.010 |                        | 1                                                                              |                                |
| Total PCBs (7 Congeners)                                                                                        | 2815                                           | 3       | malkg       | < 0.10      | F                      | ,                                                                              | ï                              |
| TPH Total WAC (Mineral OIL)                                                                                     | 2670                                           | n       | mailua      | (B) < 10    | 000                    | 4                                                                              |                                |
| Total (Df 17) PAH's                                                                                             | 2800                                           | N       | maka        | <2.0        | 100                    | E.                                                                             | t                              |
| Dir.                                                                                                            | 2010                                           |         |             | B.7         | 1                      | 2                                                                              | *                              |
| Acid Neutralisation Capacity                                                                                    | 2015                                           | N       | molika      | 0.20        |                        | To evaluate                                                                    | To evaluate                    |
| Eluate Analysis                                                                                                 | 1                                              |         | 10:1 Eluate | 10:1 Eluate | Limit values           | Limit values for compliance leaching test                                      | saching test                   |
| 1.5 million 1.5 |                                                |         | ngit        | mg/kg       | using E                | using BS EN 12457 at L/S 10 Mg                                                 | 5 10 Mg                        |
| Arsenic                                                                                                         | 1450                                           | 0       | < 0,0010    | < 0.050     | 0.5                    | 2                                                                              | 25                             |
| Bartum                                                                                                          | 1450                                           | 9       | 0,0011      | < 0.50      | 20                     | 100                                                                            | 300                            |
| Cadmium                                                                                                         | 1450                                           | 0       | < 0.00010   | < 0.010     | 0.04                   | -                                                                              | ø                              |
| Chromium                                                                                                        | 1450                                           | 0       | < 0.0010    | < 0.050     | 0.6                    | 10                                                                             | - 70                           |
| Copper                                                                                                          | 1460                                           | n       | < 0.0010    | < 0.050     | 2                      | 50                                                                             | 100                            |
| Marcury                                                                                                         | 1450                                           | n       | < 0.00050   | < 0.0050    | 0.01                   | 0.2                                                                            | 14                             |
| Motyodenum                                                                                                      | 1450                                           | 0       | 0.0037      | < 0:050     | 0.5                    | 10                                                                             | 30                             |
| Nicites                                                                                                         | 1450                                           | n       | < 0.0010    | < 0.050     | 4.0                    | 40                                                                             | 4                              |
| Lead                                                                                                            | 1450                                           | D       | < 0.0010    | < 0.010     | 0.6                    | 40                                                                             | 50                             |
| Antimony                                                                                                        | 1450                                           | n       | < 0,0010    | × 0.010     | 0.06                   | 0.7                                                                            | s                              |
| Selankum                                                                                                        | 1450                                           | 0       | < 0.0010    | < 0.010     | 0.1                    | 0.5                                                                            | 4                              |
| Zhc                                                                                                             | 1450                                           | 0       | < 0.0010    | <0.50       | 4                      | 60                                                                             | 200                            |
| Chiorida                                                                                                        | 1220                                           | n       | <1.0        | < 10        | 800                    | 15000                                                                          | 25000                          |
| Fluorida                                                                                                        | 1220                                           | n       | 0.13        | 13          | 10                     | 150                                                                            | 500                            |
| Sulphate                                                                                                        | 1220                                           | n       | <1.0        | <10         | 20005                  | 2000                                                                           | 50000                          |
| Total Dissolved Solids                                                                                          | 1020                                           | N       | 48          | 480         | 4000                   | 60000                                                                          | 100000                         |
| Phanol Index                                                                                                    | 1920                                           | 0       | <0.030      | < 0.30      |                        | 4                                                                              |                                |
| Dissolved Organic Carbon                                                                                        | 1610                                           | 0       | 4.4         | <50         | 2005                   | 600                                                                            | 1000                           |

Waste Acceptance Criteria

olid Informatio Solid Informa Ory mass of te Molshure (%)

100

applicable Ing test results; must not be used for hazarbous waste classification purposes. This analysis is and does not give any indication as to whether a waste may be hazardous or non-hazardous. Landfill WAC analysis (specifical for hazardous waste landfill acc

A.

Page 29 of 46

#### Chemtest

### Results - Single Stage WAC

| AR8600           FD4         Subtrant from the standard from t | Chemtest Job No:<br>Chemtest Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19-19643<br>841065  |         |             |             | Landfill    | Landfill Waste Acceptance Criteria<br>Limits | e Criteria         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|-------------|-------------|-------------|----------------------------------------------|--------------------|
| TPO4<br>0.50<br>0.50<br>0.50<br>0.50         TPO4<br>0.50         TPO4<br>0.65          TPO4<br>0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sampte Ref:<br>Sampte ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AA9993B             |         |             |             |             | Stable, Non-<br>resolive                     |                    |
| Under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample Location:<br>Top Depth(m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.50                |         |             |             | Inert Waste | hazardous<br>wasta in non-                   | Hazardous<br>Waste |
| On         SOP         Accreted.         Units         On         %         2.9         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bottom Depth(m);<br>Sampling Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50<br>24-May-2019 |         |             |             | Landfill    | Landfill                                     | Indhi              |
| on         2835         U         %         086         3         5         5           Referencio         2760         U         mplag         <10         1         -         -           Referencio         2760         U         mplag         <10         1         -         -         -           Referencio         2760         U         mplag         <10         1         -         -         -           Referencio         2760         U         mplag         <10         50         50         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th>Daterminand</th> <th>50p</th> <th>Accred.</th> <th>Units</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Daterminand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50p                 | Accred. | Units       |             |             |                                              |                    |
| 2010         U         %6         2.9         =         =         =           geners1         2870         U         mphb         [50,010]         6         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         =         = </td <td>Total Organic Carbon</td> <td>2625</td> <td>0</td> <td>z</td> <td>0.85</td> <td>10</td> <td>10</td> <td>9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2625                | 0       | z           | 0.85        | 10          | 10                                           | 9                  |
| 2750         U         mpha         E3.10.01         6         -           Section         U         mpha         E3.10         1         -         -           Section         U         mpha         E3.10         1         -         -         -           Section         U         mpha         E3.10         1         -         -         -         -         -           Section         N         mpha         E3.10         1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Loss On Ignition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2610                | 0       | *           | 2.9         | *           | *                                            | 10                 |
| Differention         2815         U         mpkg<br>mode         Cl         T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2760                | n       | marka       | [B] < 0.010 | 9           | -                                            | 1                  |
| freed (01)         2870         U         mplan         [8]<(0)         500         -         -         I           c         2010         U         mplan         6.5         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         56         -         -         100         10         -         -         -         56         10         -         -         56         10         -         56         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [Total PCBs (7 Congeners)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2615                | 0       | Billigm     | < 0.10      |             |                                              | 1                  |
| *         2000         N         mpling         \$2,0         100         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~         ~        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TPH Total WAC (Mineral Oil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2670                | n       | maha        | [B] < 10    | 2009        | *                                            | 1                  |
| Capeedly         2010         U         65.         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total (Of 17) PAH's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2800                | N       | mpMp        | × 2.0       | 100         |                                              | 1                  |
| Capeacity         2015         N         mm/ing         0.037          To ovaluatis            11450         U         <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2010                | 0       |             | 8.5         | 1           | 36                                           | t                  |
| T01 Elevative<br>(101 Elevative<br>1450         T01 Elevative<br>(1450         T01 Elevative<br>(1450         L010t values<br>(1450         Compliance (acce)<br>(1450         L010t values<br>(1450         L010t values<br>(1450 <thl100tvalues<br>(1450         L010tvalues<br/>(1450<td>Acid Neutralisation Capacity</td><td>2015</td><td>N</td><td>moing</td><td>0.037</td><td>1</td><td>To ovaluate</td><td>To evaluate</td></thl100tvalues<br>                                                                                                          | Acid Neutralisation Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2015                | N       | moing       | 0.037       | 1           | To ovaluate                                  | To evaluate        |
| main         main <th< td=""><td>Eluate Analysis</td><td></td><td></td><td>10:1 Eluxie</td><td>10:1 Ebuate</td><td>Limit value</td><td>a for compliance</td><td>leaching test</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eluate Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |         | 10:1 Eluxie | 10:1 Ebuate | Limit value | a for compliance                             | leaching test      |
| 1480         U         < C10010         < 0.155         2         2           1480         U         < C10010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second se |                     |         | TOT         | mg/kg       | using i     | BG EN 12467 at L0                            | S 10 Uhg           |
| 1450         U         < 0.0010         < 0.50         20         100           1450         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1450                | n       | < 0.0010    | < 0.050     | 0.5         | 2                                            | 28                 |
| 1460         U         <           0.04         1           1430         U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Barlum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1450                | n       | < 0.0010    | < 0.50      | 20          | 100                                          | 300                |
| 1430         U         < 0.0010         < 0.050         0.5         0.5           1430         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1450                | n       | < 0.00010   | < 0.010     | 0,04        | 1                                            | 0                  |
| 1480         U         < 50.0010         < 50.056         2         50           1480         U         < 6.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ichromium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1430                | 0       | < 0.0010    | < 0.050     | 0.5         | 10                                           | 20                 |
| 1430         U         < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5480                | 0       | < 0.0010    | <0.050      | 2           | 8                                            | 100                |
| 1450         U         < 0.0010         < 0.050         0.5         10           1450         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1450                | 1       | < 0.00050   | < 0.0050    | 0.01        | 0.2                                          | 01                 |
| 1450         U         < 0.0010         < 0.0550         0.4         10           1430         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matyboarum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1450                | n       | < 0.0010    | <0.050      | 0.5         | 10                                           | 8                  |
| 1450         U         < 0.0010         < 0.010         0.5         10           1450         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pulsionet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$450               | p       | < 0.0010    | < 0.050     | 0.4         | 10                                           | 40                 |
| 1450         U         < 0.0010         < 0.010         0.06         0.7         0.5           1450         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5460                | n       | < 0.0010    | < 0.010     | 0.5         | 10                                           | 20                 |
| 1450         U         < 0.0010         < 0.01         0.5         0.5           1300         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450                | n       | < 0.0010    | <0.010      | 0.06        | 0,7                                          | 5                  |
| 1450         U         < 00010         < 0.501         4         50           1220         U         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Salanium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1450                | 0       | < 0.0010    | <0.010      | 0.1         | 0.5                                          | ł                  |
| 12200         U         <1.0         <1.0         1900         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000         15000 <th15000< th=""> <th15000< th=""> <th15000< td="" th<=""><td>Zinc</td><td>1450</td><td>0</td><td>&lt; 0.0010</td><td>&lt; 0.50</td><td>4</td><td>50</td><td>200</td></th15000<></th15000<></th15000<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1450                | 0       | < 0.0010    | < 0.50      | 4           | 50                                           | 200                |
| 1220         U         0.19         1.9         1.0         1.60         1.60         1.60         1.60         1.60         2.0000         1.60         2.0000         1.60         2.0000         1.60         2.0000         1.600         2.0000         1.600         2.0000         1.600         2.0000         1.600         2.0000         1.6000         2.0000         1.6000         2.0000         1.6000         2.0000         1.6000         2.0000         1.6000         2.0000         1.6000         2.0000         1.6000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000         2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1220                | 0       | <1.0        | c 10        | 800         | 15000                                        | 25000              |
| Item         12:00         U         <1.0         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         20000         2000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fluerdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1220                | 0       | 0.19        | 3.9         | 10          | 150                                          | 900g               |
| etas         102/0         N         49         490         4000         60000         60000         60000         60000         60000         60000         60000         60000         60000         60000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000         6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subhate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1220                | 0       | <1,0        | < 10        | 1000        | 20000                                        | 50000              |
| 1920         U         < 0.030         < 0.30         1         +         Larticle         1610         U         4.6         < 600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600         600 <th< td=""><td>Total Dissohed Solids</td><td>1020</td><td>z</td><td>49</td><td>490</td><td>4000</td><td>60000</td><td>100000</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Dissohed Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1020                | z       | 49          | 490         | 4000        | 60000                                        | 100000             |
| Cartron 1910 U 4.5 c 50 800 800 Milen kg 0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phenol Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1920                | 1       | < 0.030     | < 0.30      | -           |                                              |                    |
| ortionitio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolved Organia Cartion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1610                | 0       | 4.6         | € 50        | 500         | 800                                          | 1000               |
| ottonko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |         |             |             |             |                                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solid Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |         |             |             |             |                                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry mass of test portioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,090               |         |             |             |             |                                              |                    |

Motsture (%)

Waste Acceptance Criteria

Landfill WAC anniysti (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

#### M Chemtest

### Results · Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID:                                            | 19-19643<br>841067                     |         | 3           |             | Landtill                 | Landfill Waste Acceptance Orlana<br>Limits                                         | e Criteria                     |
|------------------------------------------------------------------------------------|----------------------------------------|---------|-------------|-------------|--------------------------|------------------------------------------------------------------------------------|--------------------------------|
| Sample Ref.<br>Sample ID:<br>Sample Location:<br>Top Depth(m):<br>Benotion Dath(m) | AABB39<br>1,00<br>1,00<br>1,00<br>1,00 |         |             |             | Intert Waste<br>Landfill | Stable, Non-<br>neac6/w<br>huzardous<br>wasta in non-<br>házzrdous<br>I andříus    | Hazardous<br>Waste<br>Landfill |
| Determinand                                                                        | SOP                                    | Accred. | Units       |             |                          |                                                                                    |                                |
| Total Organic Carton                                                               | 2625                                   | n       | 2           | 0.33        |                          | 10                                                                                 | 10                             |
| Loss On Ignition                                                                   | 2610                                   | 0       | 2           | 1.6         | 1                        |                                                                                    | 10                             |
| Total BTEX                                                                         | 2760                                   | n       | man         | [B] < 0.010 | 9                        | 1                                                                                  | 3                              |
| Total PCBs (7 Corgeners)                                                           | 2815                                   | 2       | marka       | < 0.10      | +                        | 1                                                                                  | 4                              |
| TPH Total WAC (Mineral Oil)                                                        | 2670                                   | 0       | malka       | 固<10        | 000                      | 1                                                                                  | I                              |
| Total (Of 17) PAH's                                                                | 2600                                   | 2       | mphia       | <2.0        | 100                      | 1                                                                                  | t                              |
|                                                                                    | 2010                                   | 0       |             | 8.7         | 1                        | 36                                                                                 | 1                              |
| Acid Neutralisation Capacity                                                       | 2015                                   | N       | molikig     | 0.085       | 1                        | To evaluate                                                                        | To ervaluate                   |
| Eluate Analysis                                                                    |                                        |         | 10:1 Elunte | 10:1 Elunte | Limit values             | Limit values for compliance leaching test<br>select its pre 12457 at 1 is 10 line. | eaching test                   |
|                                                                                    |                                        | -       | 10000       | Russel V    |                          |                                                                                    | and and a                      |
| 91360110                                                                           | Note:                                  |         | - A0010     | 10100       | a ne                     | 400                                                                                | Not I                          |
| To denis env                                                                       | UKP+                                   |         | <0.00010    | <01010      | 0.04                     | 1 INN                                                                              | 24                             |
| Nomine                                                                             | 0974                                   | -       | < 0.0010    | <0.050      | 50                       | 10                                                                                 | 02                             |
| Deboar                                                                             | \$450                                  |         | < 0.0010    | <0.050      | 2                        | 22                                                                                 | 106                            |
| Annaury                                                                            | 1450                                   | 0       | < 0.00050   | < 0.0050    | 0.01                     | 0.2                                                                                | ы                              |
| Malybdenum                                                                         | 1450                                   | 0       | 0.0018      | < 0.050     | 9.0                      | 10                                                                                 | 30                             |
| Victor                                                                             | 3450                                   | 0       | < 0.0010    | < 0.050     | 0.4                      | 10                                                                                 | 40                             |
| ead                                                                                | 1450                                   | n       | < 0.0010    | < 0.010     | 0.5                      | 10                                                                                 | 99                             |
| Antimory                                                                           | \$450                                  | n       | < 0.0010    | <0.010      | 0.06                     | 0,7                                                                                | 5                              |
| Selenium                                                                           | 1450                                   | 0       | < 0.0010    | <0.010      | 0.1                      | 9.0                                                                                | *                              |
| Zinc                                                                               | 1450                                   | n       | < 0.0010    | < 0.50      | *                        | 50                                                                                 | 200                            |
| Chloride                                                                           | 1220                                   | n       | 1.9         | 19          | 800                      | 15000                                                                              | 25000                          |
| Fluorida                                                                           | 1220                                   | 0       | 0.10        | 1.6         | 10                       | 150                                                                                | 500                            |
| Subhate                                                                            | 1220                                   | 0       | <1.0        | c 10        | 1000                     | 20000                                                                              | 50000                          |
| Total Dissolved Solids                                                             | 1020                                   | 2       | 47          | 470         | 4000                     | 60000                                                                              | 100000                         |
|                                                                                    |                                        |         |             |             |                          |                                                                                    |                                |

Solid Information Dry mass of lest po Molsture (%)

Fluoride Sulphate Total Disso Phonol Indi

11

Waste Acceptance Criteria

tching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable noe and does not give any indication as to whether a waste may be hazardous or non-hazardous. cally les Landfill WAC analysis (specifically for hazardous waste landfill accep

Page 31 of 46

#### Chemtest Transportements to conversion

## Results - Single Stage WAC

| Chemitest Jeb No: 18-19643   | 19-19643    |         |             |             | Landfill    | Landfill Washe Acceptance Criteria        | e Criteria   |
|------------------------------|-------------|---------|-------------|-------------|-------------|-------------------------------------------|--------------|
| Chemtest Sample ID:          | 841069      |         |             |             |             | Limits                                    |              |
| Sample Ref:<br>Sample ID:    | AA113513    |         |             |             |             | Stable, Non-<br>reactive                  |              |
| Sample Location:             | 1P06        |         |             |             |             | hazardous                                 | Hazardous    |
| Top Depth(m):                | 0.50        |         |             |             | Inert Waste | -usta in stars.                           | Waste        |
| Bottom Depth(m):             | 0.50        |         |             |             | Landfill    | hazardous                                 | Landfill     |
| Sampling Date:               | 27-May-2019 |         |             |             |             | Landfill                                  |              |
| Determinand                  | SOP         | Accred. | Units       |             |             |                                           |              |
| Total Organic Carbon         | 2625        | 0       | 2           | 0.42        | 2)          | 427                                       | IP           |
| Loss On Ignition             | 2810        | n       | 22          | 2.9         | 1           | +                                         | 10           |
| Total BTEX                   | 2780        | n       | mpNg        | (B) < 0.010 | 8           | +                                         | 3            |
| Total PC8s (7 Corgenars)     | 2015        | 1       | marka       | < 0.10      | 1           | 1                                         | a.           |
| TPH Total WAC (Mineral Oil)  | 2670        | n       | marka       | [B] < 10    | 200         | 1                                         | 4            |
| Total (Of 17) PAH's          | 2800        | N       | marka       | ×20         | 1001        |                                           | t            |
| DHI                          | 2010        | n       |             | 8.5         | 1           | 94                                        | 4            |
| Acid Neutralisation Capacity | 2015        | N       | mothig      | 0.048       | 1           | To evaluate                               | To evaluate  |
| Etuate Analysis              |             |         | 10:1 Ehusto | 10:1 Eluate | Limit value | Limit values for compliance leaching test | eaching test |
|                              |             |         | MBM         | mging       | Buist       | USING DO EM 149/ 91 PO 10 IN 10           | Buildi a     |
| Arsenic                      | 1450        |         | < 0.0010    | ×0.050      | 90          | -                                         | 8            |
| Barham                       | 1450        | 0       | 0.0621      | <0'90 ×     | 30          | 100                                       | 300          |
| Cadmium                      | 1450        | n       | < 0.00010   | <0.010      | 0.04        | 1                                         | 10           |
| Chigmian                     | 1450        | n       | < 0.0010    | < 0.050     | 0.5         | 10                                        | 70           |
| Copper                       | 1450        | 0       | < 0.0010    | <0.050      | 24          | 50                                        | 100          |
| Mercury                      | 1450        | 0       | < 0.00050   | < 0.0050    | 0.01        | 0.2                                       | 2            |
| Wolybdensim                  | 1460        | n       | < 0.0010    | < 0.050     | 0.5         | 10<br>1                                   | 30           |
| Nickel                       | 1450        | 0       | < 0.0010    | < 0.050     | 0.4         | 10                                        | 40           |
| Lead                         | 1450        | 0       | <0.0010     | < 0.010     | 0.6         | 10                                        | 50           |
| Antimony                     | 1450        | n       | < 0.0010    | < 0.010     | 0.05        | 0.7                                       | 10           |
| Selenium                     | 1450        | n       | < 0.0010    | < 0.010     | 0.1         | 0.5                                       | 7            |
| 202                          | 1450        | n       | < 0.0010    | < 0.50      | 7           | 20                                        | 200          |
| Chiorida                     | 1220        | n       | <1.0        | < 10        | 800         | 15000                                     | 25000        |
| Fuoride                      | 1220        | n       | 0.15        | 1.0         | 10          | 150                                       | 500          |
| Suphale                      | 1220        | 0       | 7.6         | 76          | 1000        | 20000                                     | 50000        |
| Total Dissolved Solids       | 1020        | N       | 61          | 610         | 1000        | 60000                                     | 100000       |
| Phenal Index                 | 1920        | 0       | < 0.030     | < 0.30      | +           |                                           |              |
| Dissolved Organic Carbon     | 1610        | n       | 3.5         | < 50        | 500         | 800                                       | 1000         |
|                              |             |         |             |             |             |                                           |              |
| Solid Information            |             |         |             |             |             |                                           |              |
| Dry mass of test partion/kg  | 0600        |         |             |             |             |                                           |              |

į,

ture (%)

Waste Acceptance Criteria

Landfill WAC anilysis (specifically leaching test results) must not be used for hazartous waste classification purposes. This analysis is only applicable for-hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

### Results - Single Stage WAC

| Chemtest Jeb No: 19-19943    | 19-19543     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Landfill        | Landfill Waste Acceptance Criteria        | e Criteria   |
|------------------------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|-------------------------------------------|--------------|
| Chemtest Sample ID:          | 841070       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n.          | 2779 C 19 C 20  | Limita                                    | SAC WASH     |
| Sample Ref:<br>Sample ID:    | AA113514     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                 | Stable, Non-<br>reactive                  |              |
| Sample Location:             | TP06         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | AND DESCRIPTION | hazardous                                 | Hazardous    |
| Top Depth(m):                | 1,00         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Inert Waste     | waste in non-                             | Waste        |
| Bottom Depth(m):             | 1,00         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | Landfill        | hszardous                                 | Landill      |
| Sampling Date:               | 27-14ay-2019 |        | and the second se |             |                 | Landfil                                   |              |
| Determinand                  | SOP          | Accred | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                 |                                           |              |
| Total Organic Carbon         | 2625         | 0      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.27        |                 | 9                                         | 10           |
| Loss On Ignition             | 2610         | n      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 65          | 1               | 1                                         | 10           |
| Total BTEX                   | 2760         | n      | Dog Bull                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [B] < 0.010 | 8               |                                           | 1            |
| Total PCBs (7 Congeners)     | 3810         | 5      | Daybur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0,10      | -               |                                           |              |
| TPH Total WAC (Mineral Off)  | 2670         | n      | mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 国<10        | 200             |                                           | +            |
| Total (Of 17) PAH's          | 2800         | N      | E4/6ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *2.0        | 100             | •                                         | 1            |
| HG                           | 2010         | n      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.5         | 1               | 30                                        | *            |
| Acid Neutralisation Capacity | 2016         | N      | molika                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15        | ī               | To evaluate                               | To evaluate  |
| Etuate Analysis              |              |        | 10:1 Ehuete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10:1 Eluate | Limit value     | Limit values for compliance leaching test | eaching test |
|                              |              |        | figm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg       | using E         | using BS EN 12457 at L/S 10 Mg            | 5 10 Mg      |
| Arsenio                      | 1450         | 0      | 01000 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.050     | 5.0             | 2                                         | 25           |
| Barlum                       | 1450         | n      | 0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.50 ×     | 20              | 100                                       | 300          |
| Cadmium                      | 1450         | 2      | < 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.010     | 0.04            | +                                         | æ            |
| Chronistum                   | 1460         | n      | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.050     | 0,5             | 10                                        | 70           |
| Copper                       | 1450         | 0      | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | × 0.050     | 1.4             | 20                                        | 100          |
| Mercury                      | 1450         | 0      | < 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.0050    | 10.0            | 0.2                                       | 2            |
| Motyodenum                   | 1450         | n      | 0:0041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.050     | 0.5             | 10                                        | 30           |
| Note                         | 1450         | n      | <0100/0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.050     | 0.4             | 10                                        | 40           |
| Lead                         | 1450         | n      | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.010     | 970             | 10                                        | 20           |
| Antimomy                     | 1460         | 0      | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.010     | 0.05            | 0.7                                       | 5            |
| Satantum                     | 1450         | n      | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.010     | 1.0             | 0.5                                       | 4            |
| Znc                          | 1460         | n      | < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.50      | 4               | 98                                        | 200          |
| Chlorida                     | 1220         | 0      | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 940         | 600             | 15000                                     | 25000        |
| Flueride                     | 1220         | 0      | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,6         | 10              | 150                                       | 800          |
| Sulphate                     | 1220         | 0      | 3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96          | 1000            | 20000                                     | 50000        |
| Total Dissolved Solids       | 1020         | N      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 490         | 4000            | 6000                                      | 100000       |
| Phenoi Index                 | 1920         | 0      | < 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.30      | 1               |                                           | +            |
| Discrived Ornards Carbon     | 1610         | 9      | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <50         | 800             | 800                                       | 1000         |

1

Waste Acceptance Criteria

Solid Information Dry mass of test perforving Moteture (%)

0,090

Landfill WAC analysis (specifically leaching text results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste rineffill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Page 33 of 46

#### 

## Results - Single Stage WAC

| Chemtest Job No: 19-19043<br>Chemtest Sample ID: 841071     | 18-19043                 |         |             |             | Landill      | Landilli Waste Acceptance Griteria<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Criteria         |
|-------------------------------------------------------------|--------------------------|---------|-------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Sample Ret:<br>Sample ID:<br>Top Depth(n):<br>Top Depth(n): | AA112516<br>TP05<br>0.50 |         |             |             | Inert Waste  | Stable, Non-<br>reactive<br>hazardous<br>waste in non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hazaedous<br>Waste |
| Sampling Date:                                              | 27-May-2019              |         |             |             | Landhi       | Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TENGU              |
| Determinand                                                 | SOP                      | Accred. | Units       |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Total Organic Carton                                        | 2625                     | n       | *           | 0.38        | 2            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                 |
| Loss On Ignition                                            | 2610                     | 0       | 20          | 2.1         | 1            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                 |
| Total BTEX                                                  | 2760                     | n       | Difigm      | [B] < 0.010 | Ð            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |
| Total PCBs (7 Congenere)                                    | 2815                     | n       | bydu        | < 0.30      | V            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |
| TPH Total WAC (Nineral OI)                                  | 2670                     | n       | Dig00       | IB] < 10    | 2005         | ï                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |
| Total (Of 17) PAH's                                         | 2800                     | N N     | marka       | ×2.0        | 100          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |
| E                                                           | 2010                     | U       |             | 8.8         | 1            | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |
| Acid Neutransation Capacity                                 | 2015                     | N       | motified    | 0.095       | -            | To evaluate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | To evaluate        |
| Eluste Analysis                                             |                          |         | 10:1 Eluate | 10:1 Elunte | Limit value: | Limit values for compliance leaching test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eaching test       |
| Arbanin                                                     | 6450                     | -       | - 0.0010    | 09007       | 20           | Contraction of the local division of the loc | 36                 |
| Benum                                                       | 1460                     |         | 0.0015      | < 0.50      | 8            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300                |
| Cadmium                                                     | 1460                     | 2       | < 0.00010   | < 0.030     | 0.04         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                 |
| Chromium                                                    | 1450                     | n       | < 0.0010    | < 0.050     | 0.5          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                 |
| Copper                                                      | 1450                     | 0       | < 0.0010    | < 0.050     | ×            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                |
| Mancury                                                     | 1450                     | U.      | < 0.00050   | < 0.0050    | 10.0         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04                 |
| Molybdenum                                                  | 1460                     | 0       | 0.0016      | < 0,050     | 0.5          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                 |
| Nickel                                                      | 1450                     | n,      | < 0.0010    | < 0.050     | 0.4          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40                 |
| Lead                                                        | 1460                     | 0       | < 0,0010    | < 0.010     | 0.5          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 205                |
| Antimony                                                    | 1450                     | n       | < 0.0010    | < 0.010     | 0.05         | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                  |
| Selenium                                                    | 1450                     | 0       | < 0.0010    | < 0.010     | 0,1          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                  |
| Zho                                                         | 1450                     | 0       | < 0.0010    | < 0.50      | +            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                |
| Chloride                                                    | t220                     | n       | 5.0         | 99          | 800          | 16000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25000              |
| Flaoride                                                    | 1220                     | n       | 0.58        | 1.8         | 10           | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2005               |
| Sulphote                                                    | 1220                     | n       | 6.3         | 19          | 1000         | 20008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20003              |
| Total Dissohed Solds                                        | 1020                     | ×       | 55          | 550         | 4000         | 80008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100000             |
| Phenol Index                                                | 1920                     | n       | < 0.030     | < 0.30      | 1            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |
| Dissolved Organic Carbon                                    | 1610                     | n       | 4,5         | < 50        | 2009         | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000               |

Sture (%) 18

10

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazarroous waste classification purposes. This analysis is only applicable for hazardous weste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

## - Manual Chemtest

## Results - Single Stage WAC

(BMCE)

21813

| 19<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chemtest Job No:                                                                                                              | 19-19643    |               |                      |                      | Landfill                | Landfill Waste Acceptance Criteria       | e Criteria                |               |       |  |  |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|----------------------|----------------------|-------------------------|------------------------------------------|---------------------------|---------------|-------|--|--|--------------|--|
| At 13518         At 13518         At 13518         TP06         Stable, Mon-<br>2.00         2.00                                                                                                                                                                                                  | Chemtest Sample ID:                                                                                                           | 841072      |               |                      |                      |                         | Limits                                   | 100000                    |               |       |  |  |              |  |
| TP00         TP00           2.00         Colspan="6">Imen Ywaats in non-<br>2.00         Imen Ywaats in non-<br>2.00         Imen Ywaats in non-<br>manden           0         U         U         Imen Ywaats in non-<br>Landfill           0         U         Imen Ywaats in non-<br>manden           0         U         Imanden           0         Imanden           0         Imanden           0 <th colspan="6" imanden<="" t<="" th=""><th>Sample Ref:</th><th>AA113518</th><th></th><th></th><th></th><th></th><th>Stable, Non-</th><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <th>Sample Ref:</th> <th>AA113518</th> <th></th> <th></th> <th></th> <th></th> <th>Stable, Non-</th> <th></th>                |             |               |                      |                      |                         | Sample Ref:                              | AA113518                  |               |       |  |  | Stable, Non- |  |
| 200         200         Accruit         Units         Franchistion         Instantian           an         200         U         500         U         Visition         Visitio         Visitio                                                                                                 | Sample Location:                                                                                                              | 1P06        |               |                      |                      |                         | hazardous                                | Hazardous                 |               |       |  |  |              |  |
| 2.00           2.01         Landini         Landini <th <<="" colspan="2" th=""><th>Top Depth(m):</th><th>2,00</th><th></th><th></th><th></th><th>Inert Waste</th><th>waste in non-</th><th>Waste</th></th>                                                                                                                                                                                                                                                                                                                                                                                                      | <th>Top Depth(m):</th> <th>2,00</th> <th></th> <th></th> <th></th> <th>Inert Waste</th> <th>waste in non-</th> <th>Waste</th> |             | Top Depth(m): | 2,00                 |                      |                         |                                          | Inert Waste               | waste in non- | Waste |  |  |              |  |
| activity         Activity         Landfill           0n         2650         0         0         1         5         2           0n         2651         0         0         1         5         5         1           27010         0         0         1         1         1         5         5         5           27010         0         0         1         1         1         1         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                           | Bottom Depth(nt):                                                                                                             | 2.00        |               |                      |                      | Landfill                | hszardous                                | Landfill                  |               |       |  |  |              |  |
| on         250P<br>(10)         Accmut.<br>(11)         Units<br>(11)         (12)         3         5         5           27100         U         19         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                          | Sampling Date:                                                                                                                | 24-May-2019 |               |                      | 1.0                  |                         | Landfill                                 |                           |               |       |  |  |              |  |
| on         2855         U         %         0.21         3         5         5           Referenci)         2700         U         mg/kga         6.0         1.9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                            | Determinand                                                                                                                   | SOP         | Accred.       | Units                |                      |                         |                                          |                           |               |       |  |  |              |  |
| 2810         U         %         1.3         -         -           Reveals)         2816         U         mg/kg         [9]<0,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Organic Carbon                                                                                                          | 2825        | 0             | 20                   | 0.21                 |                         | 5                                        | 9                         |               |       |  |  |              |  |
| 2200         U         mptrag         []]<0.010         6          -           Interact OII         23/0         U         mg/kg         <2/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Loss On Ignition                                                                                                              | 2610        | n             | 18                   | 1.0                  | t                       | +                                        | 10                        |               |       |  |  |              |  |
| general)         2015         U         mg/gg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total BTEX                                                                                                                    | 2760        | n             | EN9m                 | [B] < 0.010          | 9                       |                                          | *                         |               |       |  |  |              |  |
| Intend (0)         2010         U         mg/ag         [E]<10         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total PCBs (7 Corgeneus)                                                                                                      | 2815        | n             | mgRg                 | < 0.10               | 1                       | 4                                        | 3                         |               |       |  |  |              |  |
| i         2000         N         marka         5:20         100          >-                                                                                                      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TPH Total WAC (Mineral OII)                                                                                                   | 2670        | n             | marka                | [B] < 10             | 500                     |                                          | 1                         |               |       |  |  |              |  |
| Capace/v         2010         U         mm/s         = -                                                                                                 -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total (Cf. 17) PAH's                                                                                                          | 2800        | Z             | marka                | ×20                  | 100                     | 4                                        | 1                         |               |       |  |  |              |  |
| Capacity         2015         N         method         0.15          Classification           1456         U         20110         10:11 Elunits         10:11 E | pH                                                                                                                            | 2010        | n             |                      | 8.8                  | 1                       | - 20                                     |                           |               |       |  |  |              |  |
| 101         101         101         101         101           1450         U         < 63010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acid Neutralisation Capacity                                                                                                  | 2016        | N             | matha                | 0.15                 | 1                       | To evaluate                              | To evelopte               |               |       |  |  |              |  |
| 1450         U         < 0.0010         < 0.0510         0.5         2           1430         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elunts Analysis                                                                                                               |             |               | \$0:1 Elunts<br>mail | 10:1 Eluate<br>malko | Limit values<br>usino E | a for compliance h<br>38 EN 12457 at L/S | sacking test<br>5 18 like |               |       |  |  |              |  |
| 1400         U         0.0022         <0.00         20         100           1450         U         <0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic                                                                                                                       | 1480        | n             | < 0.0010             | < 0.050              | 0.5                     | 2                                        | 35                        |               |       |  |  |              |  |
| 1450         U         <         0.0010          0.011         0.04         1           1430         U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bertum                                                                                                                        | 1450        | n             | 0.0022               | < 0.50               | 20                      | 100                                      | 300E                      |               |       |  |  |              |  |
| 1400         U         < 00010         < 0.0010         0.5         10           14100         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmlum                                                                                                                       | 1450        | 0             | < 0.00010            | < 0.010              | 0:04                    | -                                        | up.                       |               |       |  |  |              |  |
| 1430         U         < 0.0010         < 0.0010         2         60           1430         U         < 0.00564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chamium                                                                                                                       | 1450        | 2             | < 0/0010             | < 0.050              | 0.5                     | 10                                       | 70                        |               |       |  |  |              |  |
| 1450         U         <           0.01         0.2         0.1           1430         U          0.01010         0.5         10         0.5         10           1430         U          0.01010           0.5         10           1430         U          0.01010          <0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Copper                                                                                                                        | 1450        | 0             | < 0.0010             | < 0.050              | 64                      | 20                                       | 100                       |               |       |  |  |              |  |
| 1430         U         0.0044         <0.001         0.5         10           1430         U         <0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mercury                                                                                                                       | 1450        | n             | < 0.00060            | * 0.0050             | 0.01                    | 0.2                                      | ti                        |               |       |  |  |              |  |
| 1450         U         < 0.0010         < 0.050         0.4         10           1430         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Molybdenum                                                                                                                    | 1450        | 0             | 0.0044               | < 0.050              | 0.5                     | 10                                       | 30                        |               |       |  |  |              |  |
| 14:00         U         < 6001:0         < 6001:0         0.05         10           14:00         U         < 9.001:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mickel                                                                                                                        | 1450        | 0             | < 0.0010             | <0.050<br>×          | 0.4                     | 10                                       | 40                        |               |       |  |  |              |  |
| 1450         U         < 0.0010         < 0.010         0.05         0.7           1450         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L ead                                                                                                                         | 1450        | n             | < 0.0010             | < 0.050              | 0.6                     | 10                                       | 60                        |               |       |  |  |              |  |
| 1450         U         < 0.0010         < 0.010         0.1         0.5           1200         U         < 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antimony                                                                                                                      | 1460        | n             | < 0.0010             | < 0.010              | 0.06                    | 0.7                                      | 10                        |               |       |  |  |              |  |
| 1430         U         < 0.0010         < 0.40         4         50           12200         U         2.1         2.1         800         1500           12200         U         0.14         1.4         10         1500           12200         U         0.14         1.4         10         1500           1200         U         3.6         360         15000         6000           1200         N         3.6         300         6000         6000           1200         U         3.7         < 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Salanium                                                                                                                      | 1450        | n             | <0.0010              | < 0.010              | 0.1                     | 0.5                                      | 1                         |               |       |  |  |              |  |
| 1200         U         2.1         2.1         600         1500         1           12200         U         0.14         1.4         1.0         1.60         1600         1600           12200         U         3.6         3.6         1.00         20001         1.60           12200         U         3.6         5.9         5.00         20001         20001           12200         U         3.5         5.90         4000         20001         20001           13200         U         3.7         < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zinc                                                                                                                          | 1450        | 0             | < 0.0010             | < 0.50               | 4                       | 60                                       | 200                       |               |       |  |  |              |  |
| 12:00         U         0.14         1.4         1.0         155           1ds         12:20         U         3.6         3.6         2000         2000           1ds         16:00         N         3.6         5.0         4000         2000           11:00         U         5.3         5.0         4000         6000         6000           Carbon         16:0         U         5.7         < 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chloride                                                                                                                      | 1220        | n             | 2,1                  | 21                   | 800                     | 15000                                    | 25000                     |               |       |  |  |              |  |
| Ids         1200         U         3.6         3.000         20001           Ids         1020         U         3.6         300         6003         6003           Carbon         1820         U         3.7         < 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluceda                                                                                                                       | 1220        | n             | 0.14                 | 4.5                  | 10                      | 150                                      | 500                       |               |       |  |  |              |  |
| Ids 1020 N 53 530 4000 60003 Cattorn 1670 U <0.030 1 1<br>Cattorn 1670 U 3.7 <50 500 800 months 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sutphate                                                                                                                      | 1220        | n             | 3.6                  | 8                    | 1000                    | 20000                                    | 50000                     |               |       |  |  |              |  |
| 1920         U         < 0.30         1         *           Carbor         1610         U         3.7         < \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Diseoved Solids                                                                                                         | 1020        | N             | 53                   | 630                  | 4000                    | 60000                                    | 100001                    |               |       |  |  |              |  |
| Carbon 1610 U 3.7 <50 600 600 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phenol Index                                                                                                                  | 1920        | 0             | < 0,030              | < 0.30               | -                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |                           |               |       |  |  |              |  |
| ution/ig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Disjoiwind Organic Carthon                                                                                                    | 1610        | 0             | 3.7                  | × 50                 | 200                     | 600                                      | 1000                      |               |       |  |  |              |  |
| rifervilg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |             |               |                      |                      |                         |                                          |                           |               |       |  |  |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solid Information                                                                                                             |             |               |                      |                      |                         |                                          |                           |               |       |  |  |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dry mass of lest portionlig                                                                                                   | 060'0       |               |                      |                      |                         |                                          |                           |               |       |  |  |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Moisture (%)                                                                                                                  | E2          |               |                      |                      |                         |                                          |                           |               |       |  |  |              |  |

#### Waste Acceptance Criteria

Landfill WAL analysis [specifically leaching text results] must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste innoffill acceptance and does not give any indication as to whether a waste may be hazardous of non-hazardous.

Page 35 of 46

#### Chemtest Transcrienters & Connection

### Results - Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID: | 19-19843<br>841073  |         |             |             | Landill     | Landfill Waste Acceptance Griteria<br>Limits | e Criteria    |
|-----------------------------------------|---------------------|---------|-------------|-------------|-------------|----------------------------------------------|---------------|
| Sample Ref.<br>Sample ID;               | AA88835             |         |             |             |             | Stable, Non-<br>reactive                     |               |
| Sample Location:                        | TP07                |         |             |             |             | hazardous                                    | Hazardous     |
| Top Depth(m):                           | 0.50                |         |             |             | Inert Waste | waste in non-                                | Waste         |
| Sampling Date;                          | 0.50<br>24-May-2019 |         |             |             | Landfill    | Landfill                                     | Landhi        |
| Determinand                             | 80P                 | Accred. | Units       |             |             |                                              |               |
| Total Organic Carbon                    | 2825                | 0       | *           | 0.87        | 2           | 20                                           | 19            |
| Loss On Ignition                        | 2810                | n       | 24          | 4.0         | 1           | 1                                            | 10            |
| Total BTEX                              | 2760                | n       | THOMAS .    | [B] < 0.010 | 9           | 1                                            | 1             |
| Total PCBs (7 Corgeners)                | 2815                | n       | EM9m        | <0.10       | +           | 1                                            | a             |
| TPH Total WAC (Mineral Cil)             | 2870                | 0       | mana        | B <10       | 009         |                                              | a<br>0        |
| Total (Of 12) PAH's                     | 2800                | z       | mañig       | < 2,0       | 100         | 1                                            | ŀ             |
| H                                       | 2010                | 0       |             | 8.4         |             | 29                                           | 1             |
| Acid Neutralisation Capacity            | 2015                | N       | moVkg       | 0.029       |             | To evaluate                                  | To entituate  |
| Elunto Analysis                         |                     |         | 10:1 Eluato | 10:1 Eluate | Limit value | Limit values for compliance leaching test    | leaching test |
|                                         |                     |         | Ingri       | mg/kg       | a Buisn     | 35 EN 12457 at LJ                            | S 10 UNG      |
| Arsenic                                 | 1450                | n       | < 0.0010    | < 0.050     | 0.5         | 2                                            | See           |
| Barkun                                  | 1450                | n       | < 0.0010    | <0.50       | 30          | 100                                          | 300           |
| Cadmium                                 | 1450                | n       | < 0.00010   | < 0.010     | 10:04       | 1                                            | in            |
| Chromium                                | 1450                | n       | < 0.0010    | < 0.050     | 0.5         | 10                                           | 70            |
| Copper                                  | 1450                | n       | < 0.0010    | × 0.050     | 2           | 50                                           | 100           |
| Mercury                                 | 1450                | n       | > 0.00050   | < 0.0050    | 0.01        | 0.2                                          | t i           |
| Molybdenum                              | 1450                | n       | < 0.0010    | < 0.050     | 0.5         | 10                                           | 30            |
| Nickel                                  | 1450                | n       | < 0.0010    | < 0.050     | 0.4         | 10                                           | 40            |
| Lead                                    | 1450                | 2       | < 0.0010    | < 0.010     | 0.5         | 10                                           | 8             |
| Antimony                                | 1450                | n       | < 0.0010    | < 0.010     | 0.06        | 0.7                                          | US.           |
| Selenium                                | 1450                | 0       | < 0.0010    | < 0.010     | 0.1         | 0.5                                          | 1             |
| Zh6                                     | 1450                | n       | < 0.0010    | < 0.50      | 4           | 60                                           | 200           |
| Chilorida                               | 1220                | n       | ×1.0        | < 10        | 800         | 15000                                        | 25000         |
| Fluoride                                | 1220                | n       | 0.18        | 1.8         | 10          | 150                                          | 800           |
| Sulphate                                | 1220                | n       | <1.0        | × 10        | 1000        | 20000                                        | 20000         |
| Fotal Dissolved Solids                  | 1020                | N       | 48          | 480         | 4000        | 60000                                        | 100001        |
| Phenol Index                            | 1820                | n       | < 0.030     | < 0.30      | 1           |                                              |               |
| Dissolved Organic Carbon                | 1610                | n       | 5.6         | 99          | 2005        | 800                                          | 1000          |
|                                         |                     |         |             |             |             |                                              |               |
| Solid Information                       | 3                   |         |             |             |             |                                              |               |
| Dry muss of test portion/kg             | 0600                | _       |             |             |             |                                              |               |

#### Waste Acceptance Criteria Moisture (%)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

### Results - Single Stage WAC

| Chemitest Job No: 19:49643<br>Chemitest Sample ID: 841074                                              | 18-18643<br>841074                             |         |             |             | Landfill     | Landfill Wiste Acceptance Criteria<br>Limits                                    | e Criteria                    |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------|---------|-------------|-------------|--------------|---------------------------------------------------------------------------------|-------------------------------|
| Sample Ref.<br>Sample ID:<br>Sample Location:<br>Top Depth(m);<br>Bantoino Depth(m);<br>Samplino Debt: | AA06036<br>TP07<br>1.00<br>1.00<br>24-May-2019 |         |             |             | Inact Waste  | Stable, Non-<br>reactive<br>hszardous<br>waste in non-<br>hazardous<br>Landfill | Hazardous<br>Waste<br>Landfil |
| Determinand                                                                                            | SOP                                            | Accred. | Units       |             |              |                                                                                 |                               |
| Total Organic Carbon                                                                                   | 2625                                           | n       | ₽¢          | < 0.20      | 19           | 10                                                                              | 10                            |
| Lass On Ignition                                                                                       | 2610                                           | 9       | ×           | 1.7         | 1            | 1                                                                               | 10                            |
| Total BTEX                                                                                             | 2760                                           | n       | maña        | [B] < 0.010 | 9            |                                                                                 | 1                             |
| (Total PCBs (7 Congeners)                                                                              | 2845                                           | ħ       | Difigm      | < 0.10      | +            | ,                                                                               | 1                             |
| TPH Total WAC (Minaral OII)                                                                            | 2670                                           | n       | mgNg        | 11 < 10     | 202          | 1                                                                               | 1                             |
| Total (OF 17) PAH's                                                                                    | 2800                                           | z       | BwBw        | <2.0        | 100          | 4                                                                               | É                             |
| Ha                                                                                                     | 2010                                           |         |             | 8.7         | 4            | 炉                                                                               | 1                             |
| Acid Neutralisation Capacity                                                                           | 2015                                           | z       | troliting   | 0.064       | 1            | To evaluate                                                                     | To evaluate                   |
| Eluate Analysis                                                                                        |                                                |         | 10:1 Eluate | 10:1 Ekunte | Limit values | Limit values for compliance leaching test                                       | eaching test                  |
| 2                                                                                                      |                                                |         | mg/l        | mg/kg       | a graina a   | culing BS EN 12457 at L/B 10 /kg                                                | 510 Mg                        |
| Arsenic                                                                                                | 1450                                           | n       | < 0.0010    | < 0.050     | 0.5          | 2                                                                               | 22                            |
| Banium                                                                                                 | 1450                                           | R       | < 0.0010    | < 0.50      | 20           | 100                                                                             | 300                           |
| Cadmium                                                                                                | 1460                                           | p       | < 0.00010   | < 0,010     | 90:04        | 1                                                                               | æ                             |
| Chromium                                                                                               | 1450                                           | n       | < 0.0010    | < 0.060     | 0.5          | 10                                                                              | 20                            |
| Copper                                                                                                 | 1460                                           | 0       | < 0,0010    | < 0.050     | 5            | 8                                                                               | 100                           |
| Mercury                                                                                                | 1460                                           | n       | < 0.00050   | < 0.0050    | 10.0         | 02                                                                              |                               |
| Molybdenum                                                                                             | 1450                                           | n       | 0.0025      | < 0.050     | 0.5          | 10                                                                              | 30                            |
| Nickel                                                                                                 | 1450                                           | p       | < 0,0010    | < 0.050     | 40           | 10                                                                              | 40                            |
| Lead                                                                                                   | 1450                                           | 9       | < 0.0010    | < 0.010     | 0.5          | 10                                                                              | 8                             |
| Antimiony                                                                                              | 1450                                           | 0       | < 0.0010    | < 0.010     | 90.0         | 0.7                                                                             | s                             |
| Selerium                                                                                               | 1450                                           | n       | < 0.0010    | < 0.010     | 0.1          | 中の                                                                              | 1                             |
| Zino                                                                                                   | 1450                                           | 2       | < 0.0010    | <0.60       | *            | cs.                                                                             | 200                           |
| Chloride                                                                                               | 1220                                           | 0       | 1.5         | 15          | 800          | 15000                                                                           | 25000                         |
| Fluoride                                                                                               | 1220                                           | n       | 0.56        | 1.6         | 10           | 150                                                                             | 500                           |
| Sulphate                                                                                               | 1220                                           | 0       | 1.4         | 14          | 1000         | 20000                                                                           | 50000                         |
| Total Dissolved Solds                                                                                  | 1020                                           | N       | 46          | 480         | 4000         | 60000                                                                           | 100000                        |
| Phenol Index                                                                                           | 1920                                           | 9       | < 0.030     | < 0.30      | -            | A                                                                               |                               |
| Dissolved Organic Carbon                                                                               | 1610                                           | 9       | 4,8         | < 50        | 200          | 800                                                                             | 1000                          |

#### Waste Acceptance Criteria

Solid Information Dry mass of last pertion/kg Moisture (%)

Landfill WAC analysis (specifically leaching test re-ulis) must not be used for hazaroous waste classification purposes. This analysis is only applicable for hazardous weste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hizardous.

Page 37 of 46

#### 

## Results - Single Stage WAC

| Chemiest Sample ID:                | 19-19043<br>841075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |             |             | Landia                                  | Landfill Waste Acceptance Criteria<br>Limits | e Criteria   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|-------------|-----------------------------------------|----------------------------------------------|--------------|
| Sample Ref:                        | AA99931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |             |             |                                         | Stable, Non-                                 |              |
| Sample ID:                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |             |             |                                         | reactive                                     |              |
| Sample Location:                   | BUHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |             | 100000000000000000000000000000000000000 | hazardous                                    | Hazardous    |
| Tap Depth(m):                      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |             | Inert Waste                             | waste in non-                                | Waste        |
| Bottom Depth(m):                   | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |             | Landill                                 | hazardous                                    | Landfill     |
| Sampling Date:                     | 24-May-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |             |             |                                         | Landlil                                      |              |
| Determinand                        | SOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Accred. | Units       |             |                                         |                                              |              |
| Total Organic Carbon               | 2292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 34          | 0.31        | -71                                     | 10                                           | 10           |
| Loss On Ignition                   | 2610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | y           | 22          | T                                       | .1                                           | 10           |
| Total BTEX                         | 2760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | 00/0m       | [B] < 0.010 | Ð                                       | +                                            | 1            |
| (Total PCBs (7 Congeners)          | 2815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9       | marka       | < 0.10      | -                                       | +                                            | 1            |
| TPH Total WAC (Mineral Oil)        | 2670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | Dig Ma      | [B] < 10    | 500                                     |                                              | r            |
| Total (Of 17) PAH's                | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z       | malka       | <20         | 100                                     |                                              |              |
| pH                                 | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       |             | 8.3         | 1                                       | 9<                                           | 1            |
| Acid Neutralisation Capacity       | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N       | molNa       | 0,15        | 1                                       | To evaluate                                  | To evaluate  |
| Eluate Analysia                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 10:1 Eluate | 10:1 Eluate | Limit value                             | Limit values for compliance leaching test    | eaching test |
| 63                                 | and the second se |         | Ingitt      | mallea      | using E                                 | 35 EN 12457 at L/B                           | S 10 0kg     |
| Arsenic                            | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | < 0,0010 ×  | < 0.050     | 0.5                                     | 2                                            | 26           |
| Barlum                             | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9       | 0.0019      | < 0.50      | 20                                      | 1001                                         | 300          |
| Cadmium                            | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N       | < 0.00010   | < 0.010     | 0.04                                    | -                                            | 5            |
| Chromium                           | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | < 0.0010    | < 0.050     | 0,5                                     | 10                                           | 20           |
| Copper                             | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1       | < 0.0010    | < 0.050     | P4                                      | 105                                          | 100          |
| Mercury                            | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | < 0.00050   | < 0.0050    | 0.01                                    | 0.2                                          | 2            |
| Molybdenum                         | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 0.0031      | < 0.050     | 0.5                                     | 10                                           | 30           |
| Nickst                             | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | < 0.0010    | < 0.050     | 0.4                                     | 10                                           | 07           |
| Lead                               | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U       | < 0.0010    | < 0.010     | 9'0                                     | 10                                           | 50           |
| Antimony                           | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | < 0.0010    | < 0.010     | 0.06                                    | 0.7                                          | ŋ            |
| Selanhum                           | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | < 0.0010    | < 0.010     | 0.1                                     | 0.5                                          | 2            |
| Zhc.                               | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | < 0.0010    | < 0.50      | *                                       | 50                                           | 200          |
| Chloride                           | 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 1.7         | 15          | 800                                     | 15000                                        | 25000        |
| Fluctide                           | 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | 0.22        | 22          | 10                                      | 150                                          | 500          |
| Suphate                            | 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 4           | 170         | 1000                                    | 20000                                        | \$0000       |
| Total Disselved Solds              | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N       | 22          | 210         | 4000                                    | 60000                                        | 100000       |
| Phanol Index                       | 1920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | < 0.030     | <0.30       | Ŧ                                       |                                              |              |
| Desolved Organic Carbon            | 1610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n       | 50          | × 50        | 200                                     | 800                                          | 1000         |
| Solid Information                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |             |             |                                         |                                              |              |
| Day means of fact motion has       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |             |                                         |                                              |              |
| ANY RESIDENCE RESIDENCE FOR DAMAGE | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |             |                                         |                                              |              |
| (Wolsture (%)                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |             |             |                                         |                                              |              |

Waste Acceptance Criteria Moleture (%)

Landfill WAC analysis (specifically feaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste analysis to more and fores not give any indication as to whether a waste may be hazardous or non-hazardous.

i.

### Results - Single Stage WAC

| Chemlest Job No. 19-19543         | 19-19643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                 |             | Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Landfill Waste Acceptance Criteria        | a Criteria   |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------|
| Chemtest Sample ID:               | 841076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                 |             | 101.01.01.01.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lämitts                                   | States and   |
| Sample Ref;<br>Sample ID:         | A409032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stable, Non-<br>reactive                  |              |
| Sample Location:                  | 1P08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                 |             | 100 P (000 P (00 | hazardous                                 | Hazardous    |
| Top Depth(m):<br>Bottom Depth(m): | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |             | Inert Waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | waste in non-                             | Waste        |
| Sampfing Date:                    | 24-May-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Landfill                                  |              |
| Determinand                       | BOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Accred. | Units           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |              |
| Total Organic Carbon              | 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2       | 2               | 0.24        | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in                                        | æ            |
| Kass On Ignition                  | 2810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5       | 2 <sup>12</sup> | 1.9         | a r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 10                                      | 10           |
| Total BTEX                        | 2760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n       | 0000            | [B] < 0.010 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 1            |
| (Total PCBs (7 Congeners)         | 部位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0       | malka           | < 0.10      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 1            |
| [TPH Total WAC (Mineral OII)      | 2870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n       | D/06/0          | [B] < 10    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 1            |
| Total (Of 17) PAH's               | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z       | ma/ka           | <20         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | 1            |
| 2H                                | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0       |                 | 8.7         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<                                        | 1            |
| Acid Neutralisation Capacity      | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z       | moliva          | 0.18        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | To evaluate                               | To svaluate  |
| Eluate Analysis                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 10:1 Eluate     | 10:1 Eluate | <ul> <li>Limit values</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit values for compliance leaching test | eaching test |
|                                   | and a second sec |         | mgill           | mg/kg.      | using E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | using BS EN 12457 at L/S 10 Vkg           | 10.Vkg       |
| Arsenic                           | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0       | < 0.0010        | < 0.050     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                         | 26           |
| Bartum                            | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0       | < 0.0010        | <0.50       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                       | 300          |
| Cadmium                           | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2       | < 0.00010       | < 0.010     | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                         | 45           |
| Schromium                         | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0       | < 0.0010        | < 0.050     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                        | 20           |
| Capper                            | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0       | < 0.0010        | < 0:050     | <b>C</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90                                        | 100          |
| Mile repury                       | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0       | < 0.00050       | < 0.0050    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                       | 2            |
| Malybdanum                        | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2       | 0.0027          | < 0.050     | 970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                        | 30           |
| Nickel                            | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D       | < 0.0010        | < 0.050     | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                        | 40           |
| 1.080                             | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2       | < 0.0010        | < 0.010     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                        | 50           |
| Antimony                          | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n       | < 0.0010        | < 0.010     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                       | 5            |
| Setentum,                         | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •       | < 0.0010        | < 0.010     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                       | 7            |
| Zho                               | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9       | < 0.0010        | < 0.50      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                        | 200          |
| Ottoride                          | 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n       | 1.6             | 16          | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15000                                     | 25000        |
| Flucinitie                        | 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n       | 0,15            | 15          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                       | 500          |
| Suphate                           | 1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n       | 3.6             | 98          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20000                                     | 50000        |
| Total Desolved Solds              | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | z       | 52              | 620         | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80000                                     | 100000       |
| Phenol Index                      | 1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2       | < 0/030         | < 0.30      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |              |
| Dissolved: Organic Carbon         | 1610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n       | 35              | < 50        | 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 800                                       | 1000         |

Waste Acceptance Criteria

Solid Information Dry mass of test portion/ng Molecure (%)

0,000

Landfill WAC analysis (specifically feaching test results) must not be used for hazaroous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Page 39 of 46

#### 

### Results - Single Stage WAC

| Chemtest Job No:<br>Chemtest Sample ID:                                          | 18-19843                                       |         |             |             | Landfill                | Landfill Waste Acceptance Criteria<br>Limits                                     | e Criberia                     |
|----------------------------------------------------------------------------------|------------------------------------------------|---------|-------------|-------------|-------------------------|----------------------------------------------------------------------------------|--------------------------------|
| Sample Ref:<br>Sample ID:<br>Sample Location:<br>Top Depth(m):<br>Beneding Dete: | AA98927<br>TP09<br>0.50<br>0.50<br>24.Mav-2019 |         |             |             | Inert Waste<br>Landfill | Stable, Non-<br>reactive<br>hazardous<br>waste in non-<br>hazardous<br>i andrite | Hazardous<br>Waste<br>Landfill |
| Determinand                                                                      | SOP                                            | Accred. | Units       |             |                         |                                                                                  |                                |
| Total Organic Carton                                                             | 2625                                           | n       | *           | 0.36        |                         |                                                                                  |                                |
| Loss On Ignition                                                                 | 2610                                           | 0       | 31          | 23          |                         | •                                                                                | 10                             |
| Total BTEX                                                                       | 2760                                           | n       | makia       | [B] < 0.010 | 9                       | +                                                                                | 1                              |
| (Total PCBs (7 Congeners)                                                        | 2815                                           | 0       | maka        | < 0.10      | -                       |                                                                                  |                                |
| TPH Total WAC (Nineral Oil)                                                      | 2670                                           | n       | malva       | (B) < 10    | 800                     | 1                                                                                | i                              |
| Total (Of 17) PAH's                                                              | 2800                                           | N       | molitic     | *20         | 100                     | 1                                                                                | ŕ                              |
| PH                                                                               | 2010                                           | 9       | 100 CON 211 | B.7         | 1                       | 9                                                                                | 1                              |
| Acid Neutralisation Capecity                                                     | 2015                                           | R       | molitig     | 0.075       | 1                       | To evaluate                                                                      | To evaluate                    |
| Eluate Analysis                                                                  |                                                |         | 10:1 Eluate | 10:1 Eluate | Limit values            | Limit values for compliance leaching test                                        | eaching test                   |
| Arsenic                                                                          | 1450                                           | -       | < 0.0010    | C 1250      | 50                      | 2 C                                                                              | SC                             |
| Bartum                                                                           | 1450                                           |         | < 0.0010    | < 0.60      | 07                      | 100                                                                              | 300                            |
| Cadmium                                                                          | 1450                                           | 2       | < 0.00010-  | < 0:010     | 90:0                    | -                                                                                | 0                              |
| Chromium                                                                         | 1450                                           | 0       | < 0,0010    | < 0.060     | 6.5                     | 10                                                                               | 20                             |
| Copper                                                                           | 1450                                           | 1       | < 0.0010    | < 0.050     | 2                       | 8                                                                                | 1001                           |
| Manqury                                                                          | 1450                                           | n       | < 0.00050   | < 0,0050    | 0.01                    | 0.2                                                                              | ~                              |
| Mohdenum                                                                         | 1450                                           | n       | 0,0014      | < 0,050     | 50                      | 10                                                                               | 30                             |
| Nicket                                                                           | 1450                                           | 10      | < 0.0010    | < 0.050     | 0.4                     | 10                                                                               | 40                             |
| Lead                                                                             | 1450                                           | 0       | < 0.0010    | < 0.010     | 0.5                     | 10                                                                               | 60                             |
| Antemony                                                                         | 1450                                           | n       | < 0.0010    | < 0.010     | 0.08                    | 0.7                                                                              | 0                              |
| Seleman                                                                          | 1450                                           | n       | < 0.0010    | < 0.010     | 0.1                     | 0.5                                                                              | 7                              |
| Zht                                                                              | 1460                                           | n.      | < 0.0010    | < 0.50      | 4                       | 20                                                                               | 200                            |
| Chloride                                                                         | 1220                                           | 20      | 2.6         | 26          | 800                     | 15000                                                                            | 25000                          |
| Fisionide                                                                        | 1220                                           | 5       | 0.27        | 2.7         | 10                      | 150                                                                              | 600                            |
| Sulphale                                                                         | 1220                                           | n       | 2.0         | 20          | 1001                    | 20000                                                                            | - 50000                        |
| Totel Dissorved Solida                                                           | 1020                                           | N       | 51          | 510         | 1000                    | 80000                                                                            | 100000                         |
| Phenal Index                                                                     | 1920                                           | 2       | < 0.030     | < 0,30      | -                       |                                                                                  |                                |
| Dissolved Organic Carbon                                                         | 1810                                           | R       | 117         | + 50        | 000                     | 808                                                                              | 1000                           |
| Solid Information                                                                |                                                | -       |             |             |                         |                                                                                  |                                |
| The more of test sector to                                                       | 0.000                                          |         |             |             |                         |                                                                                  |                                |
| ALL OF TAXABLE IN THE PARTY OF TAXABLE PARTY.                                    | 1000                                           |         |             |             |                         |                                                                                  |                                |

Moature (%) Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazarcous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indicition as to whether a waste may be hazardous or non-hazardous.

| Chemiest Job Nc:<br>Chemiest Sample ID: | 19-12643<br>641078  |         |             |             | Landfill      | Landfill Waste Acceptance Criteria<br>Limits | e Criteria   |
|-----------------------------------------|---------------------|---------|-------------|-------------|---------------|----------------------------------------------|--------------|
| Sample Ref.<br>Sample ID:               | A499825             |         |             |             |               | Stable, Non-<br>reactive                     |              |
| Sample Location:<br>Ton Denthim!-       | 1P06                | 1       |             |             | Incer Minetes | hazardous.                                   | Hazardous    |
| Bottom Depth(m):<br>Sampling Date:      | 2.00<br>24-May-2019 |         |             |             | Landfill      | hazardous                                    | Landfill     |
| Determinand                             | SOP                 | Accred. | Units       |             |               |                                              |              |
| Total Organic Carton                    | 2625                | 0       | *           | 0.29        | 0             | 10                                           | 0            |
| Loss On Ignition                        | 2610                | 0       | ×           | 3.5         | 8             | 1                                            | 9            |
| Total BTEX                              | 2760                | U       | maka        | [B] < 0.010 | 9             | 1                                            |              |
| Total PCBs (7 Corgeners)                | 2815                | 0       | marke       | <0.10       | +             | 1                                            | 1            |
| TPH Total WAC (Mineral Oit)             | 2670                | 0       | maka        | [B] < 10    | 909           |                                              | 1            |
| Total (Of \$2) PAH's                    | 2000                | N       | maña        | × 2.0       | 100           | 1                                            | t            |
| 五                                       | 2010                | 0       |             | 8.8         | 1             | 穷                                            | x            |
| Acid Neutralisation Capacity            | 2015                | N       | molikg      | 0.14        | 1             | To evaluate                                  | To evaluate  |
| Ekrate Analysis                         |                     |         | 10:1 Ehunte | 10-1 Elvate | Limit values  | Limit values for compliance leaching test    | eaching test |
| 55 mm                                   |                     |         | mail        | mg/kg       | using B       | using BS EN 12467 at L/S 10 ling             | 101/19       |
| Arsenic                                 | 1450                | n       | < 0.0010    | < 0.050     | 0.5           | 2                                            | 22           |
| Barhum                                  | 1450                | 0       | 0.0012      | < 0.50      | 20            | 100                                          | 300          |
| Cadmium                                 | \$450               | n       | <0.00010    | < 0.010     | 0.04          | -                                            | ш            |
| Ohomum                                  | \$450               | 0       | < 0.0010    | < 0.050     | 0.5           | 10                                           | 70           |
| Copper                                  | 5450                | 0       | < 0.0010    | < 0.050     | 2             | 99                                           | 100          |
| Mancury                                 | 1460                | n       | < 0,00050   | < 0.0050    | 0.01          | 02                                           | CN.          |
| Maybdenum                               | 1450                | n       | 0.0021      | < 0.050     | 5.0           | 10                                           | 30           |
| Nickel                                  | 1450                | - 0     | < 0.0010    | < 0.050     | 40            | 10                                           | 40           |
| Load                                    | 1460                | 0       | < 0.0010    | < 0.010     | 0.5           | 10                                           | 8            |
| Antimony                                | 1450                | 0       | < 0.0010    | × 0,010     | 0.05          | 0.7                                          | io.          |
| Salarium                                | 1450                | 0       | < 0.0010    | < 0,010     | 0.1           | 0.5                                          | 7            |
| Zina                                    | 1450                | 0       | < 0.0010    | < 0.50      | 4             | 8                                            | 200          |
| Chloride                                | 1220                | n       | 26          | 260         | 800           | 15000                                        | 25000        |
| Pluoride                                | 1220                | n       | 0.16        | 1.6         | 10            | 150                                          | 200          |
| Sulphale                                | 1220                | n       | 8,4         | 84          | 1000          | 20000                                        | 50000        |
| Total Dissolved Solids                  | 1020                | z       | 48          | 480         | 4000          | 60000                                        | 100000       |
| Phenol Index                            | 1920                | 0       | < 0.030     | < 0.30      | +             |                                              | •            |
| Dissolved Omanic Carbon                 | 10-01               |         | 9.0         | - CO        | .002          | 000                                          | 1000         |

Waste Acceptance Orlterla

ot be used for hazardous waste classification purposes. This analysis institution as to whether a waste may be hazardous or non-hazardou 10 tr Ē results) 1 đ does iching test The sector Landfill WAC analysis (specifically lea for hazardous waste landfill acceptar

Page 41 of 48

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Container<br>Received |
|---------|-------------|------------|---------------------|------------------|--------------------|-----------------------|
| 841057  | 114415      |            | BH7                 | 27-May-2019      | в                  | Amber Glas<br>250ml   |
| 841057  | 114415      |            | BH7                 | 27-May-2019      | в                  | Amber Glas<br>60ml    |
| 841058  | AA99927     |            | TP01                | 27-May-2019      | 8                  | Amber Glas<br>250ml   |
| 841058  | AA99927     |            | TP01                | 27-May-2019      | В                  | Amber Glas<br>60ml    |
| 841050  | AA00928     |            | TP01                | 27 May 2010      | в                  | Amber Glas<br>250ml   |
| 841059  | AA99928     |            | TP01                | 27-May-2019      | В                  | Amber Glas<br>60ml    |
| B41061  | AA113509    |            | TP02                | 27-May-2019      | В                  | Amber Gias<br>250ml   |
| B41001  | AA113509    |            | TP02                | 27-May-2019      | ß                  | Amber Glas<br>60ml    |
| 841062  |             |            | TP02                | 24-May-2019      | в                  | Amber Glas<br>250mi   |
| 841062  |             |            | TP02                | 24-May-2019      | В                  | Amber Glas<br>60ml    |
| 841063  | AA99943     |            | TP03                | 24-May-2019      | в                  | Amber Glas<br>250ml   |
| 841083  | AA99943     |            | TP03                | 24-May-2019      | В                  | Amber Glas<br>60ml    |
| 841064  | AA99044     |            | TP03                | 24-May-2019      | в                  | Amber Glas<br>250ml   |
| 841064  | AA99944     |            | TP03                | 24-May-2019      | В                  | Amber Glas<br>60ml    |
| 841065  | AA99945     |            | TP03                | 24-May-2019      | ß                  | Amber Glas<br>260ml   |
| 841085  | AA99845     |            | TP03                | 24-May-2019      | В                  | Amber Glas<br>60ml    |
| 841086  | AA99938     |            | TP04                | 24-May-2019      | В                  | Amber Glas<br>250ml   |
| 841066  | AA99938     |            | TP04                | 24-May-2019      | В                  | Amber Glas<br>60ml    |
| 641067  | AA99939     |            | TP04                | 24-May-2019      | B                  | Amber Glas<br>250ml   |
| 841067  | AA99939     |            | TP04                | 24-May-2019      | D                  | Amber Glas<br>60ml    |
| 841069  | AA113513    |            | TP05                | 27-May-2019      | В                  | Amber Glas<br>250ml   |
| 841069  | AA113513    |            | TP05                | 27-May-2019      | в                  | Amber Glas            |



Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chamtest have a procedure to ensure typon receipt of each sample a competent taboratory shall assess whether the sample is suitable with regard to the requested tort(s). This policy and the requestive holding times applied, can be supplied upon inquired. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compremised.

Page 42 of 48



Deviations

In accordance with LIKAS Policy on Deviating Semples TPS 63. Chemiest have a procedure to ensure upon receipt of each sample a competent laboratory shall assesses whether the campte is suitable with regard to the requested test(a). This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as devisting is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

| Sample: | Sample Ref: | Sample ID: | Sample<br>Location: | Sampled<br>Date: | Deviation Code(s): | Containers<br>Received: |
|---------|-------------|------------|---------------------|------------------|--------------------|-------------------------|
| 841070  | AA113514    |            | TP05                | 27-May-2019      | В                  | Amber Glass<br>250ml    |
| 841070  | AA113514    |            | TP05                | 27-May-2019      | в                  | Amber Glass<br>60ml     |
| 841071  | AA113516    |            | TPOS                | 27-May-2019      | В                  | Amber Glass<br>250ml    |
| 841071  | AA113518    |            | TPOB                | 27-May-2019      | В                  | Amber Glass<br>60ml     |
| 841072  | AA113518    |            | TPO6                | 24-May-2019      | в                  | Amber Glass<br>250ml    |
| B41072  | AA113518    |            | TPOB                | 24-May-2019      | в                  | Amber Glas<br>60ml      |
| 841073  | AA99935     |            | TP07                | 24-May-2019      | В                  | Amber Glas<br>250ml     |
| 841073  | AA99935     |            | TP07                | 24-May-2019      | Ħ                  | Ambar Glas              |
| 841074  | AA99936     |            | TP07                | 24-May-2019      | в                  | Amber Glas<br>250ml     |
| 841074  | AA99936     |            | TP07                | 24-May-2019      | в                  | Amber Glass<br>60ml     |
| 841075  | AA99931     |            | TP06                | 24-May-2019      | В                  | Amber Glas<br>250ml     |
| 841075  | AA99931     |            | TP06                | 24-May-2019      | В                  | Amber Glass<br>60ml     |
| 841076  | AA99932     |            | TPOB                | 24-May-2019      | в                  | Amber Glas<br>250ml     |
| 541076  | AA99932     |            | TP08                | 24-May-2019      | В                  | Amber Glass<br>60ml     |
| 841077  | AA99927     |            | TP09                | 24-May-2019      | B                  | Amber Glass<br>250ml    |
| 841077  | AA99927     |            | TP09                | 24-May-2019      | 8                  | Amber Glass<br>60ml     |
| 841078  | AA99929     |            | TP09                | 24-May-2019      | в                  | Amber Glas<br>250ml     |
| 841078  | AA99929     |            | TP09                | 24-May-2019      | в                  | Amber Glass             |

# Chemtest

# Test Methods

| SOP  | Title                                                                    | Parameters Included                                                                                                                                                                       | Method summary                                                                                                                                                                                 |
|------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1020 | Electrical Conductivity and<br>Total Dissolved Solids (TDS) in<br>Waters | Electrical Conductivity and Total Dissolved<br>Solids (TDS) in Waters                                                                                                                     | Conductivity Meter                                                                                                                                                                             |
| 1220 | Anions, Alkalinity & Ammonium<br>In Waters                               | Fluoride; Chloride; Nitrite; Nitrate; Total;<br>Oxidisable Nitrogen (TON); Sulfate; Phosphate;<br>Alkalinity; Ammonium                                                                    | Automated colorimetric analysis using<br>'Aquakern 600' Discrete Analyser.                                                                                                                     |
| 1450 | Metals in Waters by ICP-MS                                               | Metals, including: Antimony; Arsecic; Barium;<br>Beryllium; Boron; Cadmium; Chromium; Cobalt;<br>Copper; Lead; Manganese; Mercuy;<br>Molyödenum; Nickel; Selenium; Tin; Vanadium;<br>Zihc | Filtration of samples followed by direct<br>determination by inductively coupled plasms<br>mass spectrometry (ICP-MS).                                                                         |
| 1610 | Total/Dissolved Organic Carbon<br>In Waters                              | Organic Carbon                                                                                                                                                                            | TOC Analyser using Catatytic Oxidation                                                                                                                                                         |
| 1920 | Phenols in Waters by HPLC                                                | Phenolic compounds including: Phenol,<br>Cresols, Xylenols, Trimelhylphenols Note:<br>Chlorophenols are excluded.                                                                         | Determination by High Performance Uquid<br>Chromatography (HPLC) using electrochemica<br>detection.                                                                                            |
| 2010 | pH Value of Soits                                                        | pH                                                                                                                                                                                        | pH Meter                                                                                                                                                                                       |
| 2015 | Acid Neutralisation Capacity                                             | Acid Reserve                                                                                                                                                                              | Titration                                                                                                                                                                                      |
| 2030 | Molsture and Stone Content of<br>Sols(Requirement of<br>MCERTS)          | Moisture content                                                                                                                                                                          | Determination of moisture content of soit as a<br>percentage of its as received mass obtained at<br><37°C.                                                                                     |
| 2120 | Water Soluble Boron, Sulphale,<br>Magnesium & Chromium                   | Boron; Sulphate; Magnesium; Chromium                                                                                                                                                      | Aqueous extraction / ICP-OES                                                                                                                                                                   |
| 2180 | Sulphur (Elemental) in Soils by<br>HPLC                                  | Sulphur                                                                                                                                                                                   | Dichloromethane extraction / HPLC with UV<br>detection                                                                                                                                         |
| 2192 | Asbestos                                                                 | Asbestos                                                                                                                                                                                  | Polarised light microscopy / Gravimetry                                                                                                                                                        |
| 2300 | Cyanides & Thiocyanate in<br>Solls                                       | Free (or easy liberatable) Cyanide: total<br>Cyanide; complex Cyanide; Thiocyanate                                                                                                        | Alkaline extraction followed by colorimetric<br>determination using Automated Flow Injection<br>Analyser.                                                                                      |
| 2325 | Sulphide in Soils                                                        | Sulphide                                                                                                                                                                                  | Sleam distillation with sulphuric acid / analysis<br>by 'Aquakam 600' Discrete Analyse, using<br>N.Ndimethyl-p-phenylenediamine.                                                               |
| 2430 | Total Sulphate in soils                                                  | Total Sulphate                                                                                                                                                                            | Acid digestion followed by determination of<br>sulphate in extract by ICP-OES.                                                                                                                 |
| 2450 | t<br>Adid Soluble Metals in Soils                                        | Metals, including: Arsenic; Barium; Beryllium;<br>Gaémium; Chromium; Cobalt; Coppur; Lead;<br>Manganese; Mercury; Molybdenum; Nickel;<br>Selenium; Vanadium; Zinc                         | Acid digestion followed by determination of<br>metals in extract by ICP-MS.                                                                                                                    |
| 2490 | Hexavalent Chromium in Soils                                             | Chromium [VI]                                                                                                                                                                             | Soil extracts are prepared by extracting dried<br>and ground soil samples into boiling water.<br>Chromium [VI] is detarmined by 'Aquakem 600<br>Discrete Analyzer using 1,5-diptenyloarbacids. |
| 2610 | Loss on Ignition                                                         | lass on ignition (LOI)                                                                                                                                                                    | Determination of the proportion by mass that is<br>lost from a soil by ignition at 550°C.                                                                                                      |
| 2025 | Total Organic Carbon in Soils                                            | Total organic Carbon (TOC)                                                                                                                                                                | Determined by high temperature combustion<br>under oxygen, using an Eltra elemental<br>analyser.                                                                                               |
| 2670 | Total Petroleum Hydrocarbons<br>(TPH) in Solls by GC-FID                 | TPH (C8–C40); optional cartion banding, e.g. 3-<br>band – GRO, DRO & LRO*TPH C8–C40                                                                                                       | Dictionomethane extraction / GC-FID                                                                                                                                                            |
| 2880 | TPH AVA Split.                                                           | Alphatics: >C5-OI, >C8-C8, >C8-C10,<br>>C10-C12, >C12-C16, >C16-C21, >C21-<br>C35, >C35-C44Aromatics: >C5-C7, >C7-C8,<br>>C8-C10, >C10-C12, >C12-C18, >C18-C21,<br>>C21-C35, >C35-C44     | Dichloromethane extraction / GCxGC FID<br>detection                                                                                                                                            |

# Chemtest 6

# **Test Methods**

| SOP                                                                      | Title                                                                  | Parameters included                                                                                                                                                                                                                                                                           | Method summary                                                                                                                                                       |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2760                                                                     | Volatile Organic Compounds<br>(VOCs) in Soils by Headspace<br>GC-MS    | Volatile organic compounds, including BTEX<br>and halogenated Aliphatic/Arcmatics. (cf.<br>USEPA Method 8360)*please refer to UKAS<br>schedule                                                                                                                                                | Automated headspace gas chromatographic<br>(GC) analysis of a soil sample, its received,<br>with mass spectrometric (MS) detection of<br>volatile organic compounds. |  |  |
| Speciated Polynuclear<br>Aromatic Hydrocarbons (PAH)<br>In Soll by GC-MS |                                                                        | Acenaphthene"; Acenaphthylene; Anthracene";<br>Benzo(ajAnthracene"; Benzo(a)[Pyrane";<br>Benzo(b)Fluoranthene"; Benzo(a)[[Perylene";<br>Benzo(k)[Fluoranthene; Chrysene";<br>Dibenz(a)[Anthracene; Fluoranthene";<br>Fluorane"; Indeno(1230d]Pyrane";<br>Naphthalene"; Phenanthrane*; Pyrane* | Dichlaromethane extraction / GC-MS                                                                                                                                   |  |  |
| 2815                                                                     | Polychiorinated Biphenyls<br>(PCB) ICES7Congeners in<br>Soils by GC-MS | ICES7 PCB congeners                                                                                                                                                                                                                                                                           | Acetone/Hexane extraction / GC-MS                                                                                                                                    |  |  |
| 2920                                                                     | Phenols in Soils by HPLC                                               | Phenolic compounds including Resorcinol,<br>Phenol, Methylphenols, Dimethylphenols, 1-<br>Naphthol and TrimethylphenolsNote:<br>chlorophenols are excluded.                                                                                                                                   | 60:40 methanol/water mixture extraction,<br>followed by HPLC determination using<br>electrochemical detection.                                                       |  |  |
| 640                                                                      | Observindention of Marts                                               |                                                                                                                                                                                                                                                                                               | ComplianceTest for Leaching of Granular<br>Waste Material and Sludge                                                                                                 |  |  |

# Chemtest

## Report Information

# Key

- U UKAS accredited M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

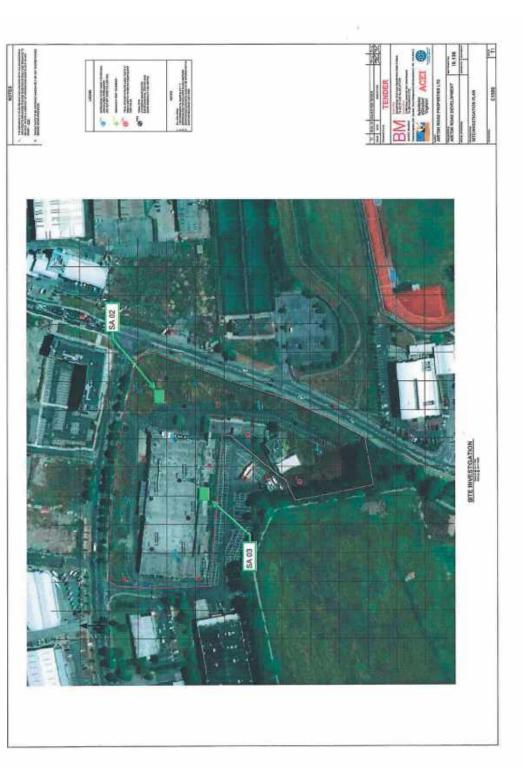
The following tests were analysed on samples as received and the results subsequently corrected to a dry

weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1


#### Sample Deviation Codes

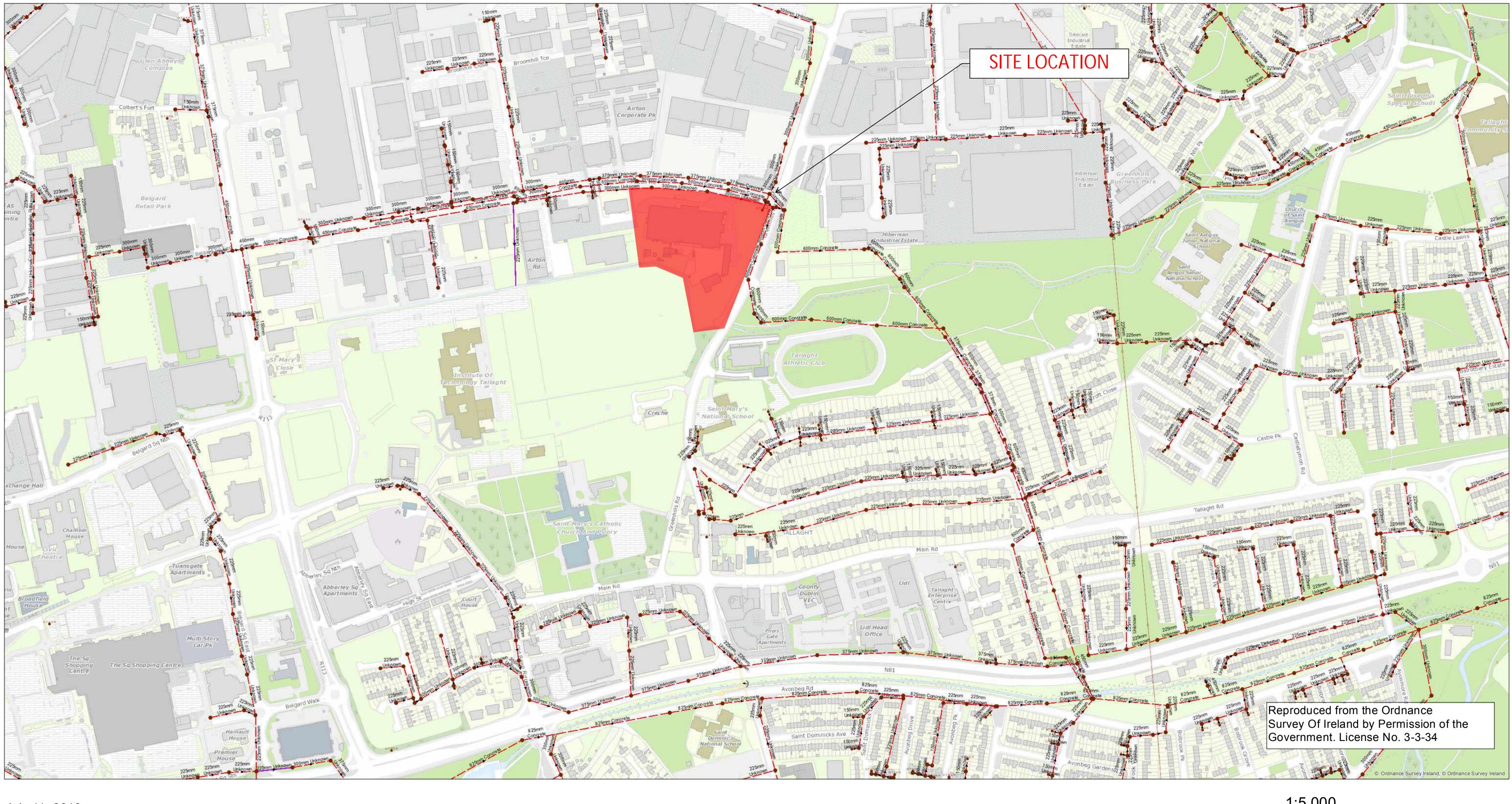
- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

## Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com




Appendix VII Site Plan

FORMER GALLAHER'S SITE, AIRTON

# 7 HYDROLOGY AND WATER SERVICES - APPENDICES

# 7.1 EXISTING WATER SUPPLY INFRASTRUCTURE





# July 11, 2019

# Legend

| Sewer Disc | harge Points    |             | Flushing Structure        |            | Gully          | Ē.           | Lamphole                       | _          | Foul                            |
|------------|-----------------|-------------|---------------------------|------------|----------------|--------------|--------------------------------|------------|---------------------------------|
| ÷          | Outfall         | 1.,, 1      | Other; Unknown            | ÷          | Standard       | <u>.</u>     | Standard                       | _          | Overflow                        |
| :          | Overflow        |             | Sewer Flow Control Valves | ( <u> </u> | Other; Unknown |              | Other; Unknown                 | _          | Unknown                         |
| Ξ          | Soakaway        | <u>+-</u>   | Treatment plant           | Sewer Man  | holes          | Sewer Fitti  | ngs                            | Sewer Grav | ity Mains (Non-Irish Water owne |
|            | Standard Outlet | ±           | Pump station              |            | Cascade        | <u>17</u>    | Vent/Col                       | -          | Combined                        |
| 1 _ 1      | Other; Unknown  | Sewer Inlet | S                         | _          | Catchpit       | 2 <u>-</u> 1 | Other; Unknown                 | _          | Foul                            |
| Sewer Clea | in Outs         | _           | Catchpit                  | .1:        | Hatchbox       | Sewer Grav   | vity Mains (Irish Water owned) | _          | Overflow                        |
| 77         | Rodding Eye     |             |                           |            |                |              | Combined                       |            |                                 |

# Irish Water Web Map

--- Unknown

Sewer Pressurized Mains

- Combined
- <del>–</del>∺ Foul
- Overflow
- Unknown

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be anticipated. © Irish Water

Irish Water

|          |       | 1:5,00 | JU |        |        |
|----------|-------|--------|----|--------|--------|
| <b>)</b> | 0.125 | 0.25   |    | (      | 0.5 mi |
| C        | 0.175 | 0.35   |    | 0.7 km |        |



FORMER GALLAHER'S SITE, AIRTON

# 7.2 MICRO-DRAINAGE CALCULATIONS



# NORTH WEST CATCHMENT SIMULATION

|                                                                                                    | ianony Co                                                                                            | nsult:                                                                                                       | ing Eng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                            |                                                                        | Pag                                                                 | je l                                                                                                  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 2 Mill S                                                                                           | Street                                                                                               |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | -                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                            |                                                                        |                                                                     |                                                                                                       |
| ondon                                                                                              |                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                            |                                                                        | 1                                                                   | -                                                                                                     |
| El 2AY                                                                                             |                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                            |                                                                        | M                                                                   | irin.                                                                                                 |
| ate 24/0                                                                                           | 1/2020 1                                                                                             | 2:17                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Des                                                                                                                                                          | signed by                                                                                                                                                                                     | Tmach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ale                                                                                                                                                |                                                                            |                                                                        | Dr                                                                  | ainane                                                                                                |
| `ile Surf                                                                                          |                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | ecked by                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                            |                                                                        | E.O                                                                 | amage                                                                                                 |
| IP Soluti                                                                                          | ons                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Net                                                                                                                                                          | work 2018                                                                                                                                                                                     | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                    |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    | STOR                                                                                                 | M SEWE                                                                                                       | ER DESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GN by ·                                                                                                                                                      | the Modif.                                                                                                                                                                                    | ied Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation                                                                                                                                              | al Me                                                                      | ethod                                                                  | L                                                                   |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | Desi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lqn Cri                                                                                                                                                      | teria for                                                                                                                                                                                     | Stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>m</u>                                                                                                                                           |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      | Pip                                                                                                          | be Sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STANDAR                                                                                                                                                      | D Manhole :                                                                                                                                                                                   | Sizes S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | standa                                                                                                                                             | RD                                                                         |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      | FS                                                                                                           | R Rainfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ill Mode                                                                                                                                                     | l - Scotlan                                                                                                                                                                                   | d and i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Irelar                                                                                                                                             | nd                                                                         |                                                                        |                                                                     |                                                                                                       |
| Maximum T                                                                                          | Maximur<br>'ime of Co<br>Fou                                                                         | n Rainf<br>ncentra<br>11 Sewa                                                                                | all (mm/<br>tion (mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm) 14.0<br>o R 0.3<br>hr)<br>ns)<br>ha) 0.0                                                                                                                 | 000<br>300<br>50<br>30 Min Des<br>000 Min                                                                                                                                                     | Min<br>Max<br>ign Dep<br>Vel fo:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | imum H<br>imum H<br>pth fo<br>r Auto                                                                                                               | Backdr<br>Backdr<br>or Opt<br>Desi                                         | te Ch<br>op He<br>op He<br>imisa<br>gn on                              | ight ()<br>tion ()<br>ly (m/)                                       | %) 0<br>m) 0.200<br>m) 1.500<br>m) 1.200                                                              |
|                                                                                                    |                                                                                                      |                                                                                                              | Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | igned w                                                                                                                                                      | ith Level S                                                                                                                                                                                   | offits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Area E                                                                                                                                                       | iagram fo                                                                                                                                                                                     | r Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rm                                                                                                                                                 |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | Time A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | real Ti                                                                                                                                                      | me Area                                                                                                                                                                                       | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area                                                                                                                                               |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | mins) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ha)                                                                                                                                               |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mar) (mar                                                                                                                                                    |                                                                                                                                                                                               | (mins)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (IIGL)                                                                                                                                             |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                            |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | 0-4 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              | 4-8 0.575                                                                                                                                                                                     | 8 <b>-</b> 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                    | L                                                                          |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | 0-4 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 036                                                                                                                                                          |                                                                                                                                                                                               | 8-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.081                                                                                                                                              | L                                                                          |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | 0-4 0.<br>Total A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .036<br>rea Cont                                                                                                                                             | 4-8 0.575                                                                                                                                                                                     | 8-12<br>na) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.081                                                                                                                                              | L                                                                          |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | 0-4 0.<br>Total A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .036<br>rea Cont                                                                                                                                             | 4-8 0.575                                                                                                                                                                                     | 8-12<br>na) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.081                                                                                                                                              | L                                                                          |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | 0-4 0.<br>Total A<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .036<br>rea Cont<br>. Pipe V                                                                                                                                 | 4-8 0.575                                                                                                                                                                                     | 8-12<br>na) = 0<br>= 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.081<br>).692<br>79                                                                                                                               | L                                                                          |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    |                                                                                                      |                                                                                                              | 0-4 0.<br>Total A<br>Total<br><u>Networ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .036<br>rea Cont<br>. Pipe V<br>k Desid                                                                                                                      | 4-8 0.575                                                                                                                                                                                     | 8-12<br>na) = 0<br>= 19.8<br>for St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.081<br>).692<br>79<br><u>corm</u>                                                                                                                | L                                                                          |                                                                        |                                                                     |                                                                                                       |
|                                                                                                    | ongth Fall<br>(m) (m)                                                                                |                                                                                                              | 0-4 0.<br>Total A<br>Total<br><u>Networ</u><br>« - In<br>• I.Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .036<br>rea Cont<br>. Pipe V.<br><u>k Desi</u><br>dicates<br><b>T.E.</b>                                                                                     | 4-8 0.575<br>ributing ()<br>olume (m <sup>3</sup> )<br>gn Table                                                                                                                               | 8-12<br>ha) = 0<br>= 19.8<br>for St<br>hty < f<br>k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.081<br>).692<br>79<br><u>corm</u><br>flow<br><b>HYD</b>                                                                                          | DIA                                                                        | Secti                                                                  | on Typ                                                              | e Auto<br>Design                                                                                      |
|                                                                                                    |                                                                                                      | (1:X)                                                                                                        | 0-4 0.<br>Total A<br>Total<br><u>Networ</u><br>« - In<br>; I.Area<br>(ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .036<br>rea Cont<br>. Pipe V.<br><u>k Desi</u><br>dicates<br><b>T.E.</b>                                                                                     | 4-8 0.575<br>ributing ()<br>slume (m <sup>3</sup> )<br>gn Table<br>pipe capac:<br>Base<br>Flow (l/s)                                                                                          | 8-12<br>ha) = 0<br>= 19.8<br>for St<br>hty < f<br>k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.081<br>0.692<br>79<br>2007M<br>10w<br>HYD<br>SECT                                                                                                | DIA<br>(mm)                                                                |                                                                        | on Typ<br>Condui                                                    | Design                                                                                                |
| S1.000 26<br>S1.001 36                                                                             | (m) (m)<br>5.312 0.13<br>5.476 0.18                                                                  | (1:X)<br>2 200.0<br>2 200.0                                                                                  | 0-4 0.<br>Total A<br>Total A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .036<br>rea Cont<br>. Pipe V.<br><u>k Desi</u><br>dicates<br><b>T.E.</b><br>(mins)<br>4.00<br>0.00                                                           | 4-8 0.575<br>pributing ()<br>an Table<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0                                                                                                             | 8-12<br>ha) = 0<br>= 19.8 <sup>-</sup><br>for St<br>Lty < f<br>k<br>(mm)<br>0.600<br>0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.081<br>).692<br>79<br>:low<br>HYD<br>SECT<br>0                                                                                                   | DIA<br>(mm)<br>225<br>225                                                  | Pipe/<br>Pipe/                                                         | Condui<br>Condui                                                    | Design<br>t                                                                                           |
| S1.000 26<br>S1.001 36                                                                             | (m) (m)<br>5.312 0.13                                                                                | (1:X)<br>2 200.0<br>2 200.0                                                                                  | 0-4 0.<br>Total A<br>Total A<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .036<br>rea Cont<br>. Pipe V.<br><u>k Desi</u><br>dicates<br><b>T.E.</b><br>(mins)<br>4.00<br>0.00                                                           | 4-8 0.575<br>pributing ()<br>an Table<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0                                                                                                             | 8-12<br>ha) = 0<br>= 19.8<br>for St<br>Lty < f<br>k<br>(mm)<br>0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.081<br>).692<br>79<br>:low<br>HYD<br>SECT<br>0                                                                                                   | DIA<br>(mm)<br>225<br>225                                                  | Pipe/<br>Pipe/                                                         | Condui                                                              | Design<br>t                                                                                           |
| s1.000 26<br>s1.001 36<br>s1.002 42                                                                | (m) (m)<br>5.312 0.13<br>5.476 0.18                                                                  | (1:X)<br>2 200.0<br>2 200.0<br>6 110.0                                                                       | 0-4 0.<br>Total A<br>Total A<br><u>Networ</u><br>« - In<br>(ha)<br>0.133<br>0.000<br>0.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .036<br>rea Cont<br>. Pipe V.<br>dicates<br><b>T.E.</b><br>(mins)<br>4.00<br>0.00<br>0.00                                                                    | 4-8 0.575<br>pributing ()<br>an Table<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0                                                                                                             | 8-12<br>ha) = 0<br>= 19.8°<br>for St<br>Lty < f<br>k<br>(mm)<br>0.600<br>0.600<br>0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.081<br>0.692<br>79<br>20rm<br>10w<br>HYD<br>SECT<br>0<br>0<br>0                                                                                  | DIA<br>(mm)<br>225<br>225<br>225                                           | Pipe/<br>Pipe/<br>Pipe/                                                | Condui<br>Condui<br>Condui                                          | Design<br>t<br>t<br>t                                                                                 |
| s1.000 26<br>s1.001 36<br>s1.002 42                                                                | (m) (m)<br>3.312 0.13<br>3.476 0.18<br>3.438 0.38                                                    | (1:X)<br>2 200.0<br>2 200.0<br>6 110.0                                                                       | 0-4 0.<br>Total A<br>Total<br>« - In<br>(ha)<br>0.030<br>0.030<br>0.097<br>0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .036<br>rea Cont<br>. Pipe V.<br>dicates<br><b>T.E.</b><br>(mins)<br>4.00<br>0.00<br>0.00<br>4.00                                                            | 4-8 0.575<br>pributing ()<br>gn Table<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0<br>0.0                                                                                                      | 8-12<br>ha) = 0<br>= 19.8<br>for St<br>k<br>(mm)<br>0.600<br>0.600<br>0.600<br>0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.081<br>0.692<br>79<br>20rm<br>10w<br>HYD<br>SECT<br>0<br>0<br>0                                                                                  | DIA<br>(mm)<br>225<br>225<br>225                                           | Pipe/<br>Pipe/<br>Pipe/                                                | Condui<br>Condui<br>Condui                                          | Design<br>t<br>t<br>t                                                                                 |
| s1.000 26<br>s1.001 36<br>s1.002 42                                                                | (m) (m)<br>3.312 0.13<br>3.476 0.18<br>.438 0.38<br>705 0.25<br>Rain                                 | (1:x)<br>2 200.0<br>2 200.0<br>6 110.0<br>9 200.0<br><b>T.C.</b>                                             | 0-4 0.<br>Total A<br>Total A<br>Networ<br>« - In<br>(ha)<br>0.133<br>0.000<br>0.037<br>0.120<br>Né<br>US/IL E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .036<br>rea Cont<br>k Desir<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>4.00                                                             | 4-8 0.575<br>pributing ()<br>an Table<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0<br>0.0<br>0.0<br>0.0<br>Results T<br>Σ Base                                                                 | 8-12<br>ha) = 0<br>= 19.8 <sup>-</sup><br>for St<br>ty < f<br>k<br>(mm)<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000 | 0.081<br>).692<br>79<br>COTM<br>SECT<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                            | DIA<br>(mm)<br>225<br>225<br>225<br>225<br>225                             | Pipe/<br>Pipe/<br>Pipe/<br>Pipe/<br><b>Vel</b>                         | Condui<br>Condui<br>Condui<br>Condui                                | Design<br>t d<br>t d<br>t<br>t<br>f<br>Flow                                                           |
| \$1.000 26<br>\$1.001 36<br>\$1.002 42<br>\$2.000 51                                               | (m) (m)<br>                                                                                          | (1:x)<br>2 200.0<br>2 200.0<br>6 110.0<br>9 200.0<br><b>T.C.</b>                                             | 0-4 0.<br>Total A<br>Total A<br>Networ<br>« - In<br>(ha)<br>0.133<br>0.000<br>0.037<br>0.120<br>Né<br>US/IL E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .036<br>rea Cont<br>k Desir<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>4.00                                                             | 4-8 0.575<br>ributing ()<br>olume (m <sup>3</sup> )<br>gn Table :<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                       | 8-12<br>ha) = 0<br>= 19.8 <sup>-</sup><br>for St<br>ty < f<br>k<br>(mm)<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000 | 0.081<br>).692<br>79<br>COTM<br>SECT<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                            | DIA<br>(mm)<br>225<br>225<br>225<br>225<br>225                             | Pipe/<br>Pipe/<br>Pipe/<br>Pipe/<br><b>Vel</b>                         | Condui<br>Condui<br>Condui<br>Condui                                | Design<br>t d<br>t d<br>t<br>t<br>f<br>Flow                                                           |
| \$1.000 26<br>\$1.001 36<br>\$1.002 42<br>\$2.000 51                                               | (m) (m)<br>3.312 0.13<br>3.476 0.18<br>.438 0.38<br>.705 0.25<br>Rain<br>(mm/hr)                     | (1:X)<br>2 200.0<br>2 200.0<br>6 110.0<br>9 200.0<br>T.C.<br>(mins)                                          | 0-4 0.<br>Total A<br>Total A<br>Networ<br>« - In<br>(ha)<br>0.133<br>0.000<br>0.037<br>0.120<br>Né<br>US/IL E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .036<br>rea Cont<br>k Desir<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>4.00                                                             | 4-8 0.575<br>(ributing ()<br>olume (m <sup>3</sup> )<br>gn Table :<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>Results T<br>E Base<br>Flow (1/s) | 8-12<br>8-12<br>for st<br>for st<br>k<br>(mm)<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>0.6000<br>00      | 0.081<br>0.692<br>79<br>COTM<br>Clow<br>HYD<br>SECT<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | DIA<br>(mm)<br>225<br>225<br>225<br>225<br>225                             | Pipe/<br>Pipe/<br>Pipe/<br>Vel<br>(m/s)                                | Condui<br>Condui<br>Condui<br>Condui<br><b>Cap</b><br>(1/s)         | Design<br>t d<br>t d<br>t<br>t<br>f<br>Flow                                                           |
| \$1.000 26<br>\$1.001 36<br>\$1.002 42<br>\$2.000 51<br><b>PN</b><br>\$1.000<br>\$1.001            | (m) (m)<br>3.312 0.13<br>4.476 0.18<br>.438 0.38<br>.705 0.25<br>Rain<br>(mm/hr) (<br>50.00<br>50.00 | (1:X)<br>2 200.0<br>2 200.0<br>6 110.0<br>9 200.0<br>9 200.0<br>T.C.<br>(mins)<br>4.48 :<br>5.14 :           | 0-4 0.<br>Total A<br>Total A<br>Networ<br>« - In<br>(ha)<br>0.133<br>0.000<br>0.097<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.133<br>0.000<br>0.0097<br>0.120<br>Networ<br>0.120<br>Networ<br>0.0097<br>0.120<br>Networ<br>0.120<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>N | 036<br>rea Cont<br>Pipe V.<br>k Desi<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>0.103<br>0.133<br>0.133 | 4-8 0.575<br>ributing (l<br>slume (m <sup>3</sup> )<br>gn Table<br>pipe capac:<br>Base<br>Flow (l/s)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                   | 8-12<br>8-12<br>10<br>8<br>8<br>8<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.081<br>0.692<br>79<br>corm<br>flow<br>HYD<br>sect<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | DIA<br>(mm)<br>225<br>225<br>225<br>225<br>225<br>225<br>9<br>0.0<br>0.0   | Pipe/<br>Pipe/<br>Pipe/<br>Vel<br>(m/s)<br>0.92<br>0.92                | Condui<br>Condui<br>Condui<br>Condui<br>Condui<br>36.6<br>36.6      | Design<br>t<br>t<br>t<br>f<br>t<br>f<br>t<br>f<br>t<br>t<br>f<br>t<br>f<br>t<br>f<br>t<br>f<br>t<br>f |
| \$1.000 26<br>\$1.001 36<br>\$1.002 42<br>\$2.000 51<br><b>PN</b><br>\$1.000<br>\$1.001            | (m) (m)<br>3.312 0.13<br>4.476 0.18<br>4.438 0.38<br>705 0.25<br>Rain<br>(mm/hr) (<br>50.00          | (1:X)<br>2 200.0<br>2 200.0<br>6 110.0<br>9 200.0<br>9 200.0<br>T.C.<br>(mins)<br>4.48 :<br>5.14 :           | 0-4 0.<br>Total A<br>Total A<br>Networ<br>« - In<br>(ha)<br>0.133<br>0.000<br>0.097<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.133<br>0.000<br>0.0097<br>0.120<br>Networ<br>0.120<br>Networ<br>0.0097<br>0.120<br>Networ<br>0.120<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>N | 036<br>rea Cont<br>Pipe V.<br><u>k Desi</u><br>dicates<br><b>T.E.</b><br>(mins)<br>4.00<br>0.00<br>4.00<br>2twork<br><b>I.Area</b><br>(ha)<br>0.133          | 4-8 0.575<br>ributing (l<br>slume (m <sup>3</sup> )<br>gn Table<br>pipe capac:<br>Base<br>Flow (l/s)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                   | 8-12<br>8-12<br>10<br>8<br>8<br>8<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.081<br>0.692<br>79<br>corm<br>flow<br>HYD<br>sect<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | DIA<br>(mm)<br>225<br>225<br>225<br>225<br>225<br>225<br>9<br>0.0<br>0.0   | Pipe/<br>Pipe/<br>Pipe/<br>Vel<br>(m/s)<br>0.92<br>0.92                | Condui<br>Condui<br>Condui<br>Condui<br><b>Cap</b><br>(1/s)<br>36.6 | Design<br>t<br>t<br>t<br>f<br>t<br>f<br>t<br>f<br>t<br>t<br>f<br>t<br>f<br>t<br>f<br>t<br>f<br>t<br>f |
| \$1.000 26<br>\$1.001 36<br>\$1.002 42<br>\$2.000 51<br><b>PN</b><br>\$1.000<br>\$1.001<br>\$1.002 | (m) (m)<br>3.312 0.13<br>4.476 0.18<br>.438 0.38<br>.705 0.25<br>Rain<br>(mm/hr) (<br>50.00<br>50.00 | (1:X)<br>2 200.0<br>2 200.0<br>6 110.0<br>9 200.0<br>9 200.0<br>7.C.<br>(mins)<br>4.48 5<br>5.14 5<br>5.14 5 | 0-4 0.<br>Total A<br>Total A<br>Networ<br>« - In<br>(ha)<br>0.133<br>0.000<br>0.097<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.120<br>Networ<br>0.133<br>0.000<br>0.0097<br>0.120<br>Networ<br>0.120<br>Networ<br>0.0097<br>0.120<br>Networ<br>0.120<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>Networ<br>N | 036<br>rea Cont<br>Pipe V.<br>k Desi<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>0.103<br>0.133<br>0.133 | 4-8 0.575<br>ributing ()<br>olume (m <sup>3</sup> )<br>gn Table :<br>pipe capac:<br>Base<br>Flow (1/s)<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                 | 8-12<br>8-12<br>10<br>8<br>8<br>8<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.081<br>0.692<br>79<br>COTM<br>10w<br>HYD<br>SECT<br>0<br>0<br>0<br>0<br>0<br>Add :<br>(1/                                                        | DIA<br>(mm)<br>225<br>225<br>225<br>225<br>225<br>0.0<br>0.0<br>0.0<br>0.0 | Pipe/<br>Pipe/<br>Pipe/<br><b>Vel</b><br>(m/s)<br>0.92<br>0.92<br>1.25 | Condui<br>Condui<br>Condui<br>Condui<br>Condui<br>36.6<br>36.6      | Design<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t |

| 12 Mill<br>London<br>SE1 2AY |               | -      | isult          | ing Eng          |                |                      |           |             |             |       | Pag                | je 2          |
|------------------------------|---------------|--------|----------------|------------------|----------------|----------------------|-----------|-------------|-------------|-------|--------------------|---------------|
| Date 24.                     | /01/20        | 20 1:  | 2:17           |                  | Dea            | signed by            | Tmach     | ale         |             |       | Mi                 | cio           |
| File Su:                     | rface.        | mdx    |                |                  |                | ecked by             |           |             |             |       | DI                 | aina          |
| KP Solu                      | tions         |        |                |                  | Net            | twork 2018           | 3.1       |             |             |       |                    |               |
|                              |               |        |                | Networ           | <u>k Desi</u>  | gn Table :           | for St    | orm         |             |       |                    |               |
| PN                           | Length<br>(m) |        | Slope<br>(1:X) | e I.Area<br>(ha) |                | Base<br>Flow (1/s)   | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Secti | on Typ.            | e Aut<br>Desi |
| S2.001                       | 29.327        | 0.147  | 200.0          | 0.000            | 0.00           | 0.0                  | 0.600     | 0           | 225         | Pipe/ | 'Condui            | t 🗃           |
| S1.003                       | 5.523         | 0.028  | 200.0          | 0.030            | 0.00           | 0.0                  | 0.600     | 0           | 225         | Pipe/ | 'Condui            | t 🚡           |
| S1.004                       | 14.000        | 0.070  | 200.0          | 0.030            | 0.00           | 0.0                  | 0.600     | 0           | 225         | Pipe/ | 'Condui            |               |
| S3.000                       | 90.000        | 0.450  | 200.0          | 0.099            | 4.00           | 0.0                  | 0.600     | 0           | 225         | Pipe/ | 'Condui            | t 🍖           |
| S4.000                       | 27.113        | 0.195  | 139.0          | 0.123            | 4.00           | 0.0                  | 0.600     | 0           | 225         | Pipe/ | 'Condui            | t 🗃           |
| S3.001                       | 10.660        | 0.053  | 201.3          | L 0.060          | 0.00           | 0.0                  | 0.600     | 0           | 225         | Pipe/ | 'Condui            | t 🖥           |
|                              |               |        |                | 0.000            |                |                      | 0.600     |             |             |       | 'Condui            |               |
|                              |               |        |                | 7 0.000          |                |                      |           |             |             |       | Condui             |               |
|                              |               |        |                | 0.000            |                |                      |           |             |             |       | 'Condui<br>'Condui |               |
| PN                           | (mm/          | hr) (1 | nins)          | (m)              | (ha)           | Σ Base<br>Flow (l/s) | (l/s)     | (1/         | s)          | (m/s) | Cap<br>(1/s)       |               |
| S2.00                        |               |        |                | 88.741           | 0.120          |                      |           |             |             | 0.92  |                    | 16.2          |
| S1.00<br>S1.00               |               |        |                | 88.595<br>88.567 | 0.380<br>0.410 |                      |           |             |             |       | 36.6«<br>36.6«     | 51.5<br>55.5  |
| s3.00                        | 0 50          | .00    | 5.63           | 89.255           | 0.099          | 0.0                  | 0.0       |             | 0.0         | 0.92  | 36.6               | 13.4          |
| S4.00                        | 0 50          | .00    | 4.41           | 89.000           | 0.123          | 0.0                  | 0.0       |             | 0.0         | 1.11  | 44.0               | 16.7          |
| S3.00                        | )1 50         | .00    | 5.82           | 88.805           | 0.282          | 0.0                  | 0.0       |             | 0.0         | 0.92  | 36.5«              | 38.2          |
| S1.00                        |               | .00    |                | 87.497           | 0.692          |                      |           |             |             |       | 36.6«              |               |
| S1.00                        |               | .00    |                | 87.217           | 0.692          |                      |           |             |             |       | 36.5«              | 93.7          |
| S1.00<br>S1.00               |               |        |                | 87.183<br>86.779 | 0.692          |                      |           |             |             |       | 36.6«<br>36.6«     | 93.7<br>93.7  |
|                              |               |        |                |                  |                |                      |           |             |             |       |                    |               |
|                              |               |        |                |                  |                |                      |           |             |             |       |                    |               |

| Barrett Mahony Consulting Eng |                      | Page 3    |
|-------------------------------|----------------------|-----------|
| 12 Mill Street                |                      |           |
| London                        |                      |           |
| SE1 2AY                       |                      | Micro     |
| Date 24/01/2020 12:17         | Designed by Tmachale | Drainanna |
| File Surface.mdx              | Checked by           | uranaye   |
| XP Solutions                  | Network 2018.1       |           |

#### Manhole Schedules for Storm

| MH<br>Name | M<br>CL | H<br>(m) | MH<br>Depth<br>(m) | Coni | MH<br>nection | MH<br>Diam.,L*W<br>(mm) | PN     | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN     | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|---------|----------|--------------------|------|---------------|-------------------------|--------|---------------------------------|------------------|--------|---------------------------------|------------------|------------------|
| SS1.0      | 91.     | 000      | 1.680              | Open | Manhole       | 1200                    | s1.000 | 89.320                          | 225              |        |                                 |                  |                  |
| SS1.1      | 90.     | 100      | 0.912              | Open | Manhole       | 1200                    | S1.001 | 89.188                          | 225              | S1.000 | 89.188                          | 225              |                  |
| SS1.2      | 89.     | 800      | 0.794              | Open | Manhole       | 1200                    | S1.002 | 89.006                          | 225              | S1.001 | 89.006                          | 225              |                  |
| ss2.0      | 90.     | 125      | 1.125              | Open | Manhole       | 1200                    | S2.000 | 89.000                          | 225              |        |                                 |                  |                  |
| ss2.1      | 90.     |          | 1.259              | Open | Manhole       | 1200                    | s2.001 | 88.741                          | 225              | s2.000 | 88.741                          | 225              |                  |
| SS1.3      | 90.     |          | 1.405              | Open | Manhole       | 1200                    | S1.003 | 88.595                          | 225              | S1.002 | 88.620                          | 225              | 25               |
|            |         |          |                    |      |               |                         |        |                                 |                  | S2.001 | 88.595                          | 225              |                  |
| ss1.4      | 90.     | 000      | 1.433              | Open | Manhole       | 1200                    | S1.004 | 88.567                          | 225              | S1.003 | 88.567                          | 225              |                  |
| SS4.0      | 91.     |          | 1.745              | Open | Manhole       | 1200                    | S3.000 | 89.255                          | 225              |        |                                 |                  |                  |
| SS3.0      | 90.     | 125      | 1.125              | Open | Manhole       | 1200                    | S4.000 | 89.000                          | 225              |        |                                 |                  |                  |
| ss4.1      | 90.     | 100      | 1.295              | Open | Manhole       | 1200                    | S3.001 | 88.805                          | 225              | S3.000 | 88.805                          | 225              |                  |
|            |         |          |                    |      |               |                         |        |                                 |                  | S4.000 | 88.805                          | 225              |                  |
| ss5.0      | 89.     | 700      | 2.203              | Open | Manhole       | 1200                    | S1.005 | 87.497                          | 225              | S1.004 | 88.497                          | 225              | 1000             |
|            |         |          |                    |      |               |                         |        |                                 |                  | S3.001 | 88.752                          | 225              | 1255             |
| SS5.1      | 88.     | 850      | 1.633              | Open | Manhole       | 1200                    | S1.006 | 87.217                          | 225              | S1.005 | 87.217                          | 225              |                  |
| ss5.2      | 88.     | 750      | 1.567              | Open | Manhole       | 1200                    | S1.007 | 87.183                          | 225              | S1.006 | 87.183                          | 225              |                  |
| SS5.3      | 88.     | 500      | 1.721              | Open | Manhole       | 1200                    | S1.008 | 86.779                          | 225              | S1.007 | 86.779                          | 225              |                  |
| S          | 88.     | 500      | 1.835              | Open | Manhole       | 0                       |        | OUTFALL                         |                  | S1.008 | 86.665                          | 225              |                  |

| Barrett Mahony Consulting Eng | 1                    | Page 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 Mill Street                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| London                        |                      | and the second s |
| SE1 2AY                       |                      | Mirco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date 24/01/2020 12:17         | Designed by Tmachale | Ocairaan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| File Surface.mdx              | Checked by           | Dramage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| XP Solutions                  | Network 2018.1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### PIPELINE SCHEDULES for Storm

# <u>Upstream Manhole</u>

| PN                                                                                                                               | _                                                                                                                                   | Diam<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                             | C.Level :<br>(m)                                                                                                                        | I.Level I<br>(m)                                                                                                                                | ).Depth<br>(m)                                                                                                                                             | MH N<br>Connection                                                                                                                                                                                                                                         | H DIAM., L*W<br>(mm)                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| S1.0                                                                                                                             | 0 0                                                                                                                                 | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS1.0                                                                                                                                       | 91.000                                                                                                                                  | 89.320                                                                                                                                          | 1.455                                                                                                                                                      | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.00                                                                                                                            | )1 o                                                                                                                                | 225 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ss1.1                                                                                                                                       | 90.100                                                                                                                                  | 89.188                                                                                                                                          | 0.687 (                                                                                                                                                    | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.0                                                                                                                             | )2 o                                                                                                                                | 225 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS1.2                                                                                                                                       | 89.800                                                                                                                                  | 89.006                                                                                                                                          | 0.569 (                                                                                                                                                    | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S2.0                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS2.0                                                                                                                                       | 90.125                                                                                                                                  | 89.000                                                                                                                                          |                                                                                                                                                            | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S2.0                                                                                                                             | )1 o                                                                                                                                | 225 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS2.1                                                                                                                                       | 90.000                                                                                                                                  | 88.741                                                                                                                                          | 1.034 0                                                                                                                                                    | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.00                                                                                                                            | )3 o                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS1.3                                                                                                                                       | 90.000                                                                                                                                  | 88.595                                                                                                                                          | 1.180 (                                                                                                                                                    | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.00                                                                                                                            | )4 o                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ss1.4                                                                                                                                       | 90.000                                                                                                                                  | 88.567                                                                                                                                          |                                                                                                                                                            | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S3.00                                                                                                                            | o 00                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ss4.0                                                                                                                                       | 91.000                                                                                                                                  | 89.255                                                                                                                                          | 1.520 (                                                                                                                                                    | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S4.00                                                                                                                            | o 00                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ss3.0                                                                                                                                       | 90.125                                                                                                                                  | 89.000                                                                                                                                          | 0.900 (                                                                                                                                                    | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S3.00                                                                                                                            | 01 0                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS4.1                                                                                                                                       | 90.100                                                                                                                                  | 88.805                                                                                                                                          | 1.070 (                                                                                                                                                    | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.0                                                                                                                             | )5 o                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS5.0                                                                                                                                       | 89.700                                                                                                                                  | 87.497                                                                                                                                          | 1.978                                                                                                                                                      | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.0                                                                                                                             | )6 O                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ss5.1                                                                                                                                       | 88.850                                                                                                                                  | 87.217                                                                                                                                          |                                                                                                                                                            | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.0                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                         | 87.183                                                                                                                                          |                                                                                                                                                            | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
| S1.00                                                                                                                            | )8 o                                                                                                                                | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ss5.3                                                                                                                                       | 88.500                                                                                                                                  | 86.779                                                                                                                                          | 1.496                                                                                                                                                      | Open Manhole                                                                                                                                                                                                                                               | 1200                                                                                                                         |
|                                                                                                                                  |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             | Downs                                                                                                                                   | tream M                                                                                                                                         | <u>lanhole</u>                                                                                                                                             |                                                                                                                                                                                                                                                            |                                                                                                                              |
| PN                                                                                                                               | Length                                                                                                                              | g1 opo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MIT                                                                                                                                         | a                                                                                                                                       |                                                                                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                                                                                                              |
| T 14                                                                                                                             | -                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |                                                                                                                                         | I.Level                                                                                                                                         | -                                                                                                                                                          |                                                                                                                                                                                                                                                            | MH DIAM., L*W                                                                                                                |
| £ 14                                                                                                                             | (m)                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Name                                                                                                                                        |                                                                                                                                         | I.Level<br>(m)                                                                                                                                  | -                                                                                                                                                          | Connection                                                                                                                                                                                                                                                 | MH DIAM., L*W<br>(mm)                                                                                                        |
| s1.000                                                                                                                           | (m)<br>26.312                                                                                                                       | (1:X)<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Name<br>SS1.1                                                                                                                               | (m)<br>90.100                                                                                                                           | (m)<br>89.188                                                                                                                                   | (m)<br>0.687                                                                                                                                               | Connection<br>Open Manhole                                                                                                                                                                                                                                 | (mm)<br>1200                                                                                                                 |
| s1.000<br>s1.001                                                                                                                 | (m)<br>26.312<br>36.476                                                                                                             | (1:X)<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name<br>551.1<br>551.2                                                                                                                      | (m)<br>90.100<br>89.800                                                                                                                 | (m)<br>89.188<br>89.006                                                                                                                         | (m)<br>0.687<br>0.569                                                                                                                                      | Connection<br>Open Manhole<br>Open Manhole                                                                                                                                                                                                                 | (mm)<br>1200<br>1200                                                                                                         |
| s1.000<br>s1.001                                                                                                                 | (m)<br>26.312                                                                                                                       | (1:X)<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name<br>551.1<br>551.2                                                                                                                      | (m)<br>90.100<br>89.800                                                                                                                 | (m)<br>89.188<br>89.006                                                                                                                         | (m)<br>0.687<br>0.569                                                                                                                                      | Connection<br>Open Manhole                                                                                                                                                                                                                                 | (mm)<br>1200<br>1200                                                                                                         |
| s1.000<br>s1.001<br>s1.002                                                                                                       | (m)<br>26.312<br>36.476                                                                                                             | (1:X)<br>200.0<br>200.0<br>110.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Name<br>551.1<br>551.2<br>551.3                                                                                                             | (m)<br>90.100<br>89.800<br>90.000                                                                                                       | (m)<br>89.188<br>89.006<br>88.620                                                                                                               | (m)<br>0.687<br>0.569<br>1.155                                                                                                                             | Connection<br>Open Manhole<br>Open Manhole                                                                                                                                                                                                                 | (mm)<br>1200<br>1200<br>1200                                                                                                 |
| s1.000<br>s1.001<br>s1.002<br>s2.000                                                                                             | (m)<br>26.312<br>36.476<br>42.438                                                                                                   | (1:X)<br>200.0<br>200.0<br>110.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1                                                                                                    | (m)<br>90.100<br>89.800<br>90.000<br>90.000                                                                                             | (m)<br>89.188<br>89.006<br>88.620<br>88.741                                                                                                     | (m)<br>0.687<br>0.569<br>1.155<br>1.034                                                                                                                    | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                                                                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200                                                                                         |
| s1.000<br>s1.001<br>s1.002<br>s2.000                                                                                             | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327                                                                               | (1:X)<br>200.0<br>200.0<br>110.0<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3                                                                                           | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>90.000                                                                                   | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595                                                                                           | (m)<br>0.687<br>0.569<br>1.155<br>1.034<br>1.180<br>1.208                                                                                                  | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                         |
| s1.000<br>s1.001<br>s1.002<br>s2.000<br>s2.001<br>s1.003                                                                         | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327                                                                               | (1:X)<br>200.0<br>200.0<br>110.0<br>200.0<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4                                                                                  | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>90.000                                                                                   | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.567                                                                                 | (m)<br>0.687<br>0.569<br>1.155<br>1.034<br>1.180<br>1.208                                                                                                  | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                                                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                         |
| s1.000<br>s1.001<br>s1.002<br>s2.000<br>s2.001<br>s1.003<br>s1.004                                                               | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523                                                                      | (1:X)<br>200.0<br>200.0<br>110.0<br>200.0<br>200.0<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4<br>SS5.0                                                                         | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>90.000<br>90.000<br>89.700                                                               | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.595<br>88.567<br>88.497                                                             | (m)<br>0.687<br>0.569<br>1.155<br>1.034<br>1.180<br>1.208<br>0.978                                                                                         | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                 |
| s1.000<br>s1.001<br>s1.002<br>s2.000<br>s2.001<br>s1.003<br>s1.004<br>s3.000                                                     | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523<br>14.000                                                            | (1:X)<br>200.0<br>200.0<br>110.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4<br>SS5.0<br>SS4.1                                                                | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>90.000<br>89.700<br>90.100                                                               | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.567<br>88.497<br>88.805                                                             | (m)<br>0.687<br>0.569<br>1.155<br>1.034<br>1.180<br>1.208<br>0.978<br>1.070                                                                                | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                 |
| S1.000<br>S1.001<br>S1.002<br>S2.000<br>S2.001<br>S1.003<br>S1.004<br>S3.000<br>S4.000                                           | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523<br>14.000<br>90.000                                                  | <pre>(1:x) 200.0 200.0 110.0 200.0 200.0 200.0 200.0 200.0 139.0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4<br>SS5.0<br>SS4.1                                                                | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>90.000<br>89.700<br>90.100<br>90.100                                                     | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.567<br>88.497<br>88.805<br>88.805                                                   | <pre>(m) 0.687 0.569 1.155 1.034 1.180 1.208 0.978 1.070 1.070</pre>                                                                                       | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                         |
| \$1.000<br>\$1.001<br>\$1.002<br>\$2.000<br>\$1.003<br>\$1.004<br>\$3.000<br>\$4.000<br>\$3.001<br>\$1.005                       | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523<br>14.000<br>90.000<br>27.113<br>10.660<br>56.000                    | (1:X)<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>139.0<br>201.1<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4<br>SS5.0<br>SS4.1<br>SS5.0<br>SS5.0                                              | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>90.000<br>89.700<br>90.100<br>89.700<br>89.700<br>88.850                                 | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.595<br>88.805<br>88.805<br>88.805<br>88.805<br>88.805                               | (m)<br>0.687<br>0.569<br>1.155<br>1.034<br>1.180<br>1.208<br>0.978<br>1.070<br>1.070<br>0.723<br>1.408                                                     | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                         |
| \$1.000<br>\$1.001<br>\$1.002<br>\$2.000<br>\$1.003<br>\$1.004<br>\$3.000<br>\$4.000<br>\$3.001<br>\$1.005<br>\$1.005            | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523<br>14.000<br>90.000<br>27.113<br>10.660<br>56.000<br>6.824           | (1:X)<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>20 | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS1.3<br>SS1.4<br>SS5.0<br>SS4.1<br>SS5.0<br>SS5.0<br>SS5.1<br>SS5.2                                     | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>89.700<br>90.100<br>89.700<br>89.700<br>88.850<br>88.750                                 | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.567<br>88.497<br>88.805<br>88.805<br>88.752<br>87.217<br>87.183                     | <pre>(m)<br/>0.687<br/>0.569<br/>1.155<br/>1.034<br/>1.180<br/>1.208<br/>0.978<br/>1.070<br/>1.070<br/>0.723<br/>1.408<br/>1.342</pre>                     | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                 |
| \$1.000<br>\$1.001<br>\$1.002<br>\$2.000<br>\$1.003<br>\$1.004<br>\$3.000<br>\$3.000<br>\$3.001<br>\$1.005<br>\$1.005<br>\$1.007 | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523<br>14.000<br>90.000<br>27.113<br>10.660<br>56.000<br>6.824<br>80.753 | (1:X)<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>20 | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4<br>SS5.0<br>SS4.1<br>SS5.0<br>SS4.1<br>SS5.0<br>SS5.1<br>SS5.1<br>SS5.2<br>SS5.3 | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>89.700<br>90.100<br>89.700<br>89.700<br>88.850<br>88.850                                 | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.567<br>88.497<br>88.805<br>88.805<br>88.752<br>88.752<br>87.217<br>87.183<br>86.779 | (m)<br>0.687<br>0.569<br>1.155<br>1.034<br>1.180<br>1.208<br>0.978<br>1.070<br>1.070<br>0.723<br>1.408<br>1.342<br>1.496                                   | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200 |
| \$1.000<br>\$1.001<br>\$1.002<br>\$2.000<br>\$1.003<br>\$1.004<br>\$3.000<br>\$3.000<br>\$3.001<br>\$1.005<br>\$1.005<br>\$1.007 | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523<br>14.000<br>90.000<br>27.113<br>10.660<br>56.000<br>6.824           | (1:X)<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>20 | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4<br>SS5.0<br>SS4.1<br>SS5.0<br>SS4.1<br>SS5.0<br>SS5.1<br>SS5.1<br>SS5.2<br>SS5.3 | (m)<br>90.100<br>89.800<br>90.000<br>90.000<br>89.700<br>90.100<br>89.700<br>89.700<br>88.850<br>88.850<br>88.500                       | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.567<br>88.497<br>88.805<br>88.805<br>88.752<br>88.752<br>87.217<br>87.183<br>86.779 | (m)<br>0.687<br>0.569<br>1.155<br>1.034<br>1.180<br>1.208<br>0.978<br>1.070<br>1.070<br>0.723<br>1.408<br>1.342<br>1.496                                   | Connection<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole<br>Open Manhole                                                                                 | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200 |
| \$1.000<br>\$1.001<br>\$1.002<br>\$2.000<br>\$1.003<br>\$1.004<br>\$3.000<br>\$3.000<br>\$3.001<br>\$1.005<br>\$1.005<br>\$1.007 | (m)<br>26.312<br>36.476<br>42.438<br>51.705<br>29.327<br>5.523<br>14.000<br>90.000<br>27.113<br>10.660<br>56.000<br>6.824<br>80.753 | (1:X)<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>20 | Name<br>SS1.1<br>SS1.2<br>SS1.3<br>SS2.1<br>SS1.3<br>SS1.4<br>SS5.0<br>SS4.1<br>SS5.0<br>SS4.1<br>SS5.0<br>SS5.1<br>SS5.1<br>SS5.2<br>SS5.3 | <pre>(m)<br/>90.100<br/>89.800<br/>90.000<br/>90.000<br/>89.700<br/>90.100<br/>89.700<br/>89.700<br/>88.850<br/>88.500<br/>88.500</pre> | (m)<br>89.188<br>89.006<br>88.620<br>88.741<br>88.595<br>88.567<br>88.497<br>88.805<br>88.805<br>88.752<br>88.752<br>87.217<br>87.183<br>86.779 | <pre>(m)<br/>0.687<br/>0.569<br/>1.155<br/>1.034<br/>1.180<br/>1.208<br/>0.978<br/>1.070<br/>1.070<br/>0.723<br/>1.408<br/>1.342<br/>1.496<br/>1.610</pre> | Connection<br>Open Manhole<br>Open Manhole | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200 |

©1982-2018 Innovyze

|                                                                                                                                                                                                          | lting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Eng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                  | Page 5                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Barrett Mahony Consul<br>12 Mill Street                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                  | ago o                                                                                        |
| London                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                              |
| SE1 2AY                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                  | and the second                                                                               |
| Date 24/01/2020 12:1                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Des                                                                                                                               | igned by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tmachale                                                                                                                                                                                           |                                                                                                                                                                                                                                  | Micro                                                                                        |
| File Surface.mdx                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | cked by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                                                                  | Drainage                                                                                     |
| XP Solutions                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | work 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.1                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                                              |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                  |                                                                                              |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Area</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a Summ                                                                                                                            | ary for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Storm                                                                                                                                                                                              |                                                                                                                                                                                                                                  |                                                                                              |
| Pipe                                                                                                                                                                                                     | PIMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PIMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PIMP                                                                                                                              | Gross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Imp. Pi                                                                                                                                                                                            | pe Total                                                                                                                                                                                                                         |                                                                                              |
| Number                                                                                                                                                                                                   | r Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (%) A:                                                                                                                            | rea (ha) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rea (ha)                                                                                                                                                                                           | (ha)                                                                                                                                                                                                                             |                                                                                              |
| 1.000                                                                                                                                                                                                    | - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.133                                                                                                                                                                                              | 0.133                                                                                                                                                                                                                            |                                                                                              |
| 1.001                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                            |                                                                                              |
| 1.002                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                               | 0.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.097                                                                                                                                                                                              | 0.097                                                                                                                                                                                                                            |                                                                                              |
| 2.000                                                                                                                                                                                                    | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.120                                                                                                                                                                                              | 0.120                                                                                                                                                                                                                            |                                                                                              |
| 2.001                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                            |                                                                                              |
|                                                                                                                                                                                                          | 3 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.030                                                                                                                                                                                              | 0.030                                                                                                                                                                                                                            |                                                                                              |
| 1.004                                                                                                                                                                                                    | 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.030                                                                                                                                                                                              | 0.030                                                                                                                                                                                                                            |                                                                                              |
| 3.000                                                                                                                                                                                                    | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.099                                                                                                                                                                                              | 0.099                                                                                                                                                                                                                            |                                                                                              |
| 4.000                                                                                                                                                                                                    | ) –<br>) –<br>1 –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.123                                                                                                                                                                                              | 0.123                                                                                                                                                                                                                            |                                                                                              |
| 3.001                                                                                                                                                                                                    | . –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.060                                                                                                                                                                                              | 0.060                                                                                                                                                                                                                            |                                                                                              |
| 1.005                                                                                                                                                                                                    | o –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                            |                                                                                              |
| 1.000                                                                                                                                                                                                    | o –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100<br>100<br>100                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                            |                                                                                              |
| 1.005                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                              | 0.000                                                                                                                                                                                                                            |                                                                                              |
| 1:000                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total                                                                                                                                                                                              | Total                                                                                                                                                                                                                            |                                                                                              |
|                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | 0 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.692                                                                                                                                                                                              | 0.692                                                                                                                                                                                                                            |                                                                                              |
| Fr                                                                                                                                                                                                       | ree Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lowing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g Outf                                                                                                                            | all Deta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.030<br>0.099<br>0.123<br>0.060<br>0.000<br>0.000<br>0.000<br>0.000<br>Total<br>0.692<br>ils for S                                                                                                | torm                                                                                                                                                                                                                             |                                                                                              |
| Outfal                                                                                                                                                                                                   | LI OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | utfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C. Lev                                                                                                                            | vel I. Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                    | D,L W                                                                                                                                                                                                                            |                                                                                              |
| Outfal<br>Pipe Num                                                                                                                                                                                       | LI OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | utfall<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C. Lev<br>(m)                                                                                                                     | vel I. Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | el Min<br>I. Level<br>(m)                                                                                                                                                                          | D,L W                                                                                                                                                                                                                            |                                                                                              |
| Outfal<br>Pipe Num                                                                                                                                                                                       | Ll Ou<br>nber<br>.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | utfall<br>Name<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C. Lev<br>(m)<br>88.5                                                                                                             | rel I. Leve<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | el Min<br>I. Level<br>(m)                                                                                                                                                                          | D,L W<br>(mm) (mm)                                                                                                                                                                                                               |                                                                                              |
| Outfal<br>Pipe Num<br>Sl.                                                                                                                                                                                | Ll On<br>nber<br>.008<br><u>Si</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | utfall<br>Name<br>s<br>mulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C. Lev<br>(m)<br>88.5<br>ion Ci                                                                                                   | vel I. Leve<br>(m)<br>500 86.66<br>riteria f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | el Min<br>I. Level<br>(m)<br>65 0.000                                                                                                                                                              | D,L W<br>(mm) (mm)                                                                                                                                                                                                               | Elow 0 000                                                                                   |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot<br>Hot Star                                                                                                                                 | Ll On<br>nber<br>.008<br><u>Si</u><br>Runoff<br>action<br>Start<br>t Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s<br><u>mulat</u><br>Coeff<br>Factor<br>(mins)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C. Lev<br>(m)<br>88.5<br>ion Ci<br>5 0.750<br>5 1.000<br>0<br>0                                                                   | vel I. Leva<br>(m)<br>500 86.64<br>riteria f<br>Additic<br>MAD<br>Flow per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al Min<br>I. Level<br>(m)<br>55 0.000<br>For Storm<br>D Factor *<br>In:<br>Person per                                                                                                              | D,L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m <sup>3</sup> /ha Sto<br>Let Coeffico<br>Day (1/per/                                                                                                                               | rage 2.000<br>ient 0.800<br>day) 0.000                                                       |
| Outfal<br>Pipe Num<br>Sl.<br>Volumetric                                                                                                                                                                  | Ll On<br>mber<br>.008<br><u>Si</u><br>Runoff<br>action<br>Start<br>t Leve<br>peff (G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | utfall<br>Name<br>S<br>mulat<br>Coeff<br>Factor<br>(mins)<br>el (mm)<br>Slobal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C. Lev<br>(m)<br>88.5<br>ion Ci<br>0.750<br>0.000<br>0.000                                                                        | rel I. Leva<br>(m)<br>500 86.60<br>riteria f<br>Additio<br>MAD<br>Flow per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al Min<br>I. Level<br>(m)<br>55 0.000<br>For Storm<br>mal Flow -<br>D Factor *<br>In:<br>Person per                                                                                                | D,L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m <sup>3</sup> /ha Sto<br>Let Coeffico<br>Day (1/per/                                                                                                                               | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60                                            |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of                                                                        | nber<br>.008<br><u>Si</u><br>Runoff<br>action<br>Start<br>t Leve<br>eeff (G<br>eectare<br>Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s<br>mulat<br>Coeff<br>Factor<br>(mins)<br>(mm)<br>(lobal)<br>(1/s)<br>Hydroo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C. Lev<br>(m)<br>88.5<br>ion Ci<br>0.750<br>1.000<br>0.500<br>0.500<br>0.000<br>graphs                                            | <pre>/el I. Leva<br/>(m)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al Min<br>I. Level<br>(m)<br>55 0.000<br>For Storm<br>onal Flow -<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage                                                                       | D,L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m <sup>3</sup> /ha Sto<br>let Coeffiec<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :                                                                                 | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1                                  |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of                                                           | nber<br>.008<br><u>Si</u><br>Runoff<br>ction<br>Start<br>t Leve<br>eff (G<br>ectare<br>Input<br>of Onl:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s<br>mulat<br>Coeff<br>Factor<br>(mins)<br>(mm)<br>Cobal)<br>(l(mm)<br>Cobal)<br>(l/s)<br>Hydrov<br>ine Cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C. Lev<br>(m)<br>88.5<br>ion Ci<br>0.750<br>1.000<br>0.000<br>0.500<br>0.000<br>graphs<br>ntrols                                  | rel I. Leva<br>(m)<br>500 86.60<br>riteria f<br>Additio<br>MAE<br>Flow per<br>0 Number o<br>1 Number o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min     I. Level     (m)     65 0.000     Or Storm     Or Storm     Person per     Output     Of Storage     of Storage     f Time/Are                                                             | D,L W<br>(mm) (mm)<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0                                                                                                                                           | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1                                  |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of                                                           | 11 On<br>mber<br>.008<br><u>Si</u><br>Runoff<br>action<br>Start<br>t Leve<br>eeff (G<br>mectare<br>Input<br>of Onlis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s<br>mulat<br>Coeff<br>Factor<br>(mins)<br>1 (mm)<br>Clobal)<br>(1/s)<br>Hydroc<br>ine Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C. Lev<br>(m)<br>88.5<br>ion Ci<br>0.7500<br>0.5000<br>0.5000<br>0.0000<br>graphs<br>ntrols                                       | rel I. Leva<br>(m)<br>500 86.60<br>riteria f<br>Additio<br>MAE<br>Flow per<br>0 Number o<br>1 Number o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Al Min<br>I. Level<br>(m)<br>55 0.000<br>Cor Storm<br>Cor Storm<br>Cor Storm<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim                              | D.L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m³/ha Sto<br>let Coeffiec<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :<br>a Diagrams (                                                                              | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1                                  |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of                                                           | Ll ou<br>nber<br>.008<br><u>Si</u><br>Runoff<br>action<br>Start<br>t Leve<br>beff (G<br>bectare<br>Input<br>of Onl:<br>f offl:<br><u>S</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S<br>mulat<br>Coeff<br>Factor<br>(mins)<br>(mm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Factor<br>(mins)<br>(nm)<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff<br>Coeff | C. Lev<br>(m)<br>88.5<br>ion Ci<br>0.7500<br>0.5000<br>0.5000<br>0.0000<br>graphs<br>ntrols                                       | rel I. Leva<br>(m)<br>500 86.60<br>riteria f<br>Additic<br>MAE<br>Flow per<br>0 Number (<br>0 Number (<br>0 Number (<br>0 Number (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min<br>I. Level<br>(m)<br>55 0.000<br>For Storm<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim<br>Details                                                | D,L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m*/ha Sto<br>Let Coeffice<br>Day (1/per/<br>Run Time /M<br>Interval (m<br>Interval (m<br>Structures :<br>a Diagrams (<br>e Controls (                                               | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1                                  |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot<br>Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of<br>Number of<br>Rainfall<br>Return Period (                   | Ll on<br>mber<br>.008<br><u>Si</u><br>Runoff<br>iction<br>Start<br>t Leve<br>beff (G<br>iectare<br>Input<br>of Onli<br>f Offl:<br><u>S</u><br>Model<br>vears)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s<br>mulat<br>Coeff<br>Factor<br>(mins)<br>(mins)<br>(l (mm)<br>(l (mm)<br>(l (mm)<br>(l (mm)<br>(l (mm)<br>(l (mm))<br>(l (mm)))<br>(l (mm))<br>(l (mm)))<br>(l (mm))<br>(l (mm)))<br>(l (mm                                                                                                                                                                                                                                                                                                                                        | C. Lew<br>(m)<br>88.5<br>ion Cr<br>c 0.750<br>c 0.500<br>0.000<br>0.000<br>graphs<br>ntrols<br>ntrols<br>atic R                   | rel I. Leva<br>(m)<br>500 86.60<br>riteria f<br>Additio<br>MAD<br>Flow per<br>0 Number 0<br>1 Number 0<br>0 Number 0<br>3 Number 0<br>5 SR<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al Min<br>I. Level<br>(m)<br>55 0.000<br>For Storm<br>D Factor *<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim<br>Details<br>Pl<br>(                    | D.L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m³/ha Sto<br>let Coefficc<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :<br>a Diagrams (<br>e Controls (<br>coffile Type<br>by (Summer)                               | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1<br>L<br>L<br>Summer<br>0.750     |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot<br>Saral Redu<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of<br>Number of<br>Rainfall<br>Return Period ( | Ll on<br>mber<br>.008<br><u>Si</u><br>Runoff<br>action<br>Start<br>t Leve<br>seff (G<br>acctare<br>Input<br>of Onl:<br>f offl:<br><u>Si</u><br>Model<br>years)<br>Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stfall<br>Name<br>S<br><u>mulat</u><br>Coefff<br>Factor<br>(mins)<br>((mins)<br>((mins)<br>(lobal)<br>(1/s)<br>Hydrov<br>ine Co:<br>()<br>Synthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C. Lew<br>(m)<br>88.5<br>ion Cr<br>c 0.750<br>c 0.500<br>0.000<br>0.000<br>graphs<br>ntrols<br>ntrols<br>atic R                   | rel I. Leva<br>(m)<br>500 86.64<br>riteria f<br>Additio<br>MAD<br>Flow per<br>0 Number 0<br>1 Number 0<br>0 Number 0<br>0 Number 0<br>1 Number 0<br>1 Number 0<br>1 Number 0<br>0 Number 0<br>1 Number 0<br>1 Number 0<br>0 Number 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al Min<br>I. Level<br>(m)<br>65 0.000<br>For Storm<br>D Factor *<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim<br>Details<br>Pi<br>( 0)<br>( 0)         | D.L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m³/ha Sto<br>let Coefficc<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :<br>a Diagrams (<br>e Controls (<br>coffile Type<br>cv (Summer)<br>Cv (Summer)<br>Cv (Winter) | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1<br>L<br>Summer<br>0.750<br>0.840 |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of<br>Number of<br>Rainfall<br>Return Period (                      | Il On orbitation of the second | S<br>mulat<br>( Coeff<br>Coeff<br>(mins)<br>(mins)<br>(mins)<br>(lobal)<br>Hydrov<br>ine Coi<br>ine Coi<br>Synthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C. Lew<br>(m)<br>88.5<br>ion Cr<br>c 0.750<br>c 0.500<br>0.000<br>0.000<br>graphs<br>ntrols<br>ntrols<br>atic R                   | <pre>/vel I. Leve<br/>(m) // (m) /</pre> | al Min<br>I. Level<br>(m)<br>65 0.000<br>For Storm<br>D Factor *<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim<br>Details<br>Pi<br>( 0)<br>( 0)         | D.L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m³/ha Sto<br>let Coefficc<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :<br>a Diagrams (<br>e Controls (<br>coffile Type<br>by (Summer)                               | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1<br>L<br>Summer<br>0.750<br>0.840 |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of<br>Number of<br>Rainfall<br>Return Period (                      | Ll on<br>mber<br>.008<br><u>Si</u><br>Runoff<br>action<br>Start<br>t Leve<br>seff (G<br>acctare<br>Input<br>of Onl:<br>f offl:<br><u>Si</u><br>Model<br>years)<br>Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S<br>mulat<br>( Coeff<br>Coeff<br>(mins)<br>(mins)<br>(lobal)<br>Hydrov<br>ine Coi<br>ine Coi<br>Synthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. Lew<br>(m)<br>88.5<br>ion Cr<br>c 0.750<br>c 0.500<br>0.000<br>0.000<br>graphs<br>ntrols<br>ntrols<br>atic R                   | rel I. Leva<br>(m)<br>500 86.64<br>riteria f<br>Additio<br>MAD<br>Flow per<br>0 Number 0<br>1 Number 0<br>0 Number 0<br>0 Number 0<br>1 Number 0<br>1 Number 0<br>1 Number 0<br>0 Number 0<br>1 Number 0<br>1 Number 0<br>0 Number 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al Min<br>I. Level<br>(m)<br>65 0.000<br>For Storm<br>D Factor *<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim<br>Details<br>Pi<br>( 0)<br>( 0)         | D.L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m³/ha Sto<br>let Coefficc<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :<br>a Diagrams (<br>e Controls (<br>coffile Type<br>cv (Summer)<br>Cv (Summer)<br>Cv (Winter) | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1<br>L<br>Summer<br>0.750<br>0.840 |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of<br>Number of<br>Rainfall<br>Return Period (                      | Il On orbitation of the second | S<br>mulat<br>( Coeff<br>Coeff<br>(mins)<br>(mins)<br>(lobal)<br>Hydrov<br>ine Coi<br>ine Coi<br>Synthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. Lew<br>(m)<br>88.5<br>ion Cr<br>c 0.750<br>c 0.500<br>0.000<br>0.000<br>graphs<br>ntrols<br>ntrols<br>atic R                   | <pre>/vel I. Leve<br/>(m) // (m) /</pre> | al Min<br>I. Level<br>(m)<br>65 0.000<br>For Storm<br>D Factor *<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim<br>Details<br>Pi<br>( 0)<br>( 0)         | D.L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m³/ha Sto<br>let Coefficc<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :<br>a Diagrams (<br>e Controls (<br>coffile Type<br>cv (Summer)<br>Cv (Summer)<br>Cv (Winter) | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1<br>L<br>Summer<br>0.750<br>0.840 |
| Outfal<br>Pipe Num<br>S1.<br>Volumetric<br>Areal Redu<br>Hot Star<br>Manhole Headloss Co<br>Foul Sewage per h<br>Number of<br>Number of<br>Number of<br>Rainfall<br>Return Period (                      | Il On orbitation of the second | S<br>mulat<br>Coeff<br>Factor<br>(mins)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(lobal)<br>(l                                                                                                                                                                                                                                                    | C. Lev<br>(m)<br>88.5<br>ion C1<br>5 0.750<br>1.000<br>0.500<br>0.500<br>0.000<br>graphs<br>ntrols<br>ntrols<br>atic R<br>land an | <pre>/vel I. Leve<br/>(m) // (m) /</pre> | An Min<br>I. Level<br>(m)<br>55 0.000<br>Cor Storm<br>Cor Storm<br>D Factor *<br>In:<br>Person per<br>Output<br>of Storage<br>of Time/Are<br>of Real Tim<br>Details<br>Pr<br>(<br>(<br>Storm Durat | D.L W<br>(mm) (mm)<br>0 0<br>% of Total<br>10m³/ha Sto<br>let Coefficc<br>Day (1/per/<br>Run Time (m<br>Interval (m<br>Structures :<br>a Diagrams (<br>e Controls (<br>coffile Type<br>cv (Summer)<br>Cv (Summer)<br>Cv (Winter) | rage 2.000<br>ient 0.800<br>day) 0.000<br>ins) 60<br>ins) 1<br>L<br>Summer<br>0.750<br>0.840 |

|                                                               | lting Eng     |                                        |                |                |                  | Page 6          |
|---------------------------------------------------------------|---------------|----------------------------------------|----------------|----------------|------------------|-----------------|
| 12 Mill Street                                                |               |                                        |                |                |                  |                 |
| London                                                        |               |                                        |                |                |                  |                 |
| SE1 2AY                                                       |               |                                        |                |                |                  | Million         |
| Date 24/01/2020 12:1                                          | .7            | Designed                               | d by Tm        | achale         |                  | MILLU           |
| File Surface.mdx                                              |               | Checked                                |                |                |                  | Drainage        |
| XP Solutions                                                  |               | Network                                |                |                |                  |                 |
| m boluciono                                                   |               | 110 01101 11                           | 2010.1         |                |                  |                 |
|                                                               |               | ne Controls                            |                |                |                  |                 |
| <u>Hydro-Brake® Opt</u>                                       | imum Manho    | le: SS5.0,                             | DS/PN:         | <u>s1.005,</u> | Volume (1        | <u>m³): 3.4</u> |
|                                                               |               | nit Reference                          |                | 0072-2500-     |                  |                 |
| HYDROBRAKE DES                                                |               | sign Head (m)                          |                |                | 1.200<br>2.5     |                 |
| PARAMETERS                                                    | Desig         | n Flow (l/s)<br>Flush-Flo <sup>n</sup> |                | C              | 2.5<br>alculated |                 |
|                                                               |               |                                        |                | .se upstrea    |                  |                 |
|                                                               |               | Application                            | L              | ~              | Surface          |                 |
|                                                               |               | ump Available                          |                |                | Yes              |                 |
|                                                               |               | Diameter (mm)<br>ert Level (m)         |                |                | 72<br>87.497     |                 |
| Minimum (                                                     | utlet Pipe I  |                                        |                |                | 100              |                 |
|                                                               | ted Manhole I |                                        |                |                | 1200             |                 |
|                                                               | Control       | Points                                 | Head (m        | ) Flow (l/s    | ;)               |                 |
| D                                                             | esign Point   |                                        |                |                |                  |                 |
|                                                               |               | Flush-Flo <sup>TH</sup>                |                |                |                  |                 |
|                                                               | lean Flow ove | Kick-Flo®                              |                | 4 1.<br>- 2.   |                  |                 |
| Hydro-Brake Optimum®  <br>invalidated<br>Depth (m) Flow (1/s) |               |                                        |                |                |                  |                 |
| 0.100 1.9                                                     |               | 2.5                                    | 3.000          | 3.8            | 7.000            |                 |
| 0.200 2.2                                                     |               | 2.7                                    | 3.500          | 4.1            | 7.500            |                 |
| 0.300 2.3                                                     |               | 2.8                                    | 4.000          | 4.4            | 8.000            |                 |
| 0.400 2.3                                                     |               | 3.0                                    | 4.500          | 4.6            | 8.500            |                 |
| 0.500 2.2<br>0.600 2.0                                        |               | 3.2                                    | 5.000<br>5.500 | 4.8<br>5.1     | 9.000<br>9.500   |                 |
| 0.800 2.0                                                     |               | 3.4                                    | 6.000          |                | 9.300            | 0.0             |
| 1.000 2.3                                                     |               | 3.6                                    | 6.500          |                |                  |                 |
|                                                               |               |                                        |                |                |                  |                 |
|                                                               |               |                                        |                |                |                  |                 |

| Barrett Mahony Consulting Eng         | 1                                                              | Page 7     | ] | Barrett Mahony Consulting                            | Eng                                                                                                                               | Page 8                   |
|---------------------------------------|----------------------------------------------------------------|------------|---|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 12 Mill Street                        |                                                                |            | - | 12 Mill Street                                       | -                                                                                                                                 |                          |
| London                                |                                                                |            |   | London                                               |                                                                                                                                   |                          |
| SE1 2AY                               |                                                                | THE ADD    |   | SE1 2AY                                              |                                                                                                                                   | WEINER, AND              |
| Date 24/01/2020 12:17                 | Designed by Tmachale                                           | Micro      |   | Date 24/01/2020 12:17                                | Designed by Tmachale                                                                                                              | Micro                    |
| File Surface.mdx                      | Checked by                                                     | Drainage   |   | File Surface.mdx                                     | Checked by                                                                                                                        | Drainage                 |
| XP Solutions                          | Network 2018.1                                                 |            |   | XP Solutions                                         | Network 2018.1                                                                                                                    |                          |
|                                       |                                                                |            | - |                                                      |                                                                                                                                   |                          |
| <u>Stora</u>                          | age Structures for Storm                                       |            |   | <u>l year Return Period Summ</u>                     | nary of Critical Results by Maximum<br>for Storm                                                                                  | n Level (Rank 1)         |
| <u>Cellular Stora</u>                 | age Manhole: SS5.0, DS/PN: S1.0                                | <u>)05</u> |   |                                                      | Simulation Criteria                                                                                                               |                          |
| I I I I I I I I I I I I I I I I I I I | Invert Level (m) 87.497 Safety Fact                            | or 1.0     |   |                                                      | Factor 1.000 Additional Flow - % of To                                                                                            |                          |
| Infiltration Coeffici                 | ient Base (m/hr) 0.00000 Porosi                                |            |   | Hot Start<br>Hot Start Leve                          | (mins) 0 MADD Factor * 10m³/ha<br>1 (mm) 0 Inlet Coef                                                                             | fiecient 0.800           |
|                                       | ient Side (m/hr) 0.00000                                       | 2          |   |                                                      | lobal) 0.500 Flow per Person per Day (1/                                                                                          |                          |
|                                       | . Area (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> ) Inf. |            |   |                                                      | Hydrographs 0 Number of Storage Structu:                                                                                          |                          |
| 0.000 260.0<br>1.000 260.0            | 0.0<br>0.0                                                     | 0.0        |   | Number of Onli                                       | ine Controls 1 Number of Storage Structu<br>ine Controls 1 Number of Time/Area Diagr<br>ine Controls 0 Number of Real Time Contro | ams 8                    |
| AQUACELL ATTENU                       | ATION TANK -                                                   |            |   |                                                      | Synthetic Rainfall Details                                                                                                        |                          |
| 1m dp X 260m <sup>2</sup>             |                                                                |            |   | Rainfall Mod                                         | el FSR Ratio R 0.30<br>on Scotland and Ireland Cv (Summer) 0.75                                                                   |                          |
| • • • •                               |                                                                |            |   |                                                      | m) 14.000 Cv (Winter) 0.84                                                                                                        |                          |
|                                       |                                                                |            |   | Margin for Floo                                      | od Risk Warning (mm) 100.0 DVD Statu:                                                                                             | 5 ON                     |
|                                       |                                                                |            |   |                                                      | Analysis Timestep Fine Inertia Statu:<br>DTS Status OFF                                                                           |                          |
|                                       |                                                                |            |   | Profil                                               | e(s) Summer :                                                                                                                     | and Winter               |
|                                       |                                                                |            |   | Duration(s) (m.                                      | ins) 15, 30, 60, 120, 180, 240, 360,<br>720, 960, 1440, 2160, 2880, 4                                                             | 480, 600,<br>320, 5760,  |
| 1                                     |                                                                |            |   | Return Period(s) (ye                                 |                                                                                                                                   | 540, 10080<br>L, 30, 100 |
|                                       |                                                                |            |   | Climate Change                                       |                                                                                                                                   | 20, 20, 20               |
|                                       |                                                                |            |   | US/MH Retur                                          | m Climate First (X) First (Y)                                                                                                     | First (Z) Overflow       |
|                                       |                                                                |            |   | PN Name Storm Perio                                  | od Change Surcharge Flood                                                                                                         | Overflow Act.            |
|                                       |                                                                |            |   | S1.000 SS1.0 240 Winter                              | 1 +20%                                                                                                                            |                          |
|                                       |                                                                |            |   |                                                      | 1 +20%                                                                                                                            |                          |
|                                       |                                                                |            |   | S1.002 SS1.2 240 Winter<br>S2.000 SS2.0 240 Winter   | 1 +20% 100/1440 Winter<br>1 +20% 100/1440 Winter                                                                                  |                          |
|                                       |                                                                |            |   | S2.000 SS2.0 240 Winter<br>S2.001 SS2.1 240 Winter   |                                                                                                                                   |                          |
|                                       |                                                                |            |   | S1.003 SS1.3 240 Winter                              | 1 +20% 100/30 Winter                                                                                                              |                          |
|                                       |                                                                |            |   | S1.004 SS1.4 240 Winter                              |                                                                                                                                   |                          |
|                                       |                                                                |            |   | S3.000 SS4.0 240 Winter<br>S4.000 SS3.0 240 Winter   | 1 +20%<br>1 +20% 100/1440 Winter                                                                                                  |                          |
|                                       |                                                                |            |   | S3.001 SS4.1 240 Winter                              | 1 +20% 100/960 Winter                                                                                                             |                          |
|                                       |                                                                |            |   | S1.005 SS5.0 1440 Winter                             |                                                                                                                                   | -                        |
|                                       |                                                                |            |   | S1.006 SS5.1 1440 Winter<br>S1.007 SS5.2 1440 Winter | 1 +20%<br>1 +20%                                                                                                                  |                          |
|                                       |                                                                |            |   |                                                      | 1 +20%                                                                                                                            |                          |
|                                       |                                                                |            |   |                                                      |                                                                                                                                   |                          |
|                                       |                                                                |            |   |                                                      |                                                                                                                                   |                          |
|                                       | 01000 0010 Tenor                                               |            |   |                                                      | @1000_0010_Text.                                                                                                                  |                          |
|                                       | ©1982-2018 Innovyze                                            |            | ] |                                                      | ©1982-2018 Innovyze                                                                                                               |                          |

# RESULTS FOR 1-in-1 YEAR STORM +20% CLIMATE CHANGE ALLOWANCE

| arrett Mah | nony C | onsult           | ing Eng    |              |         |          |            |         | Page 9       |
|------------|--------|------------------|------------|--------------|---------|----------|------------|---------|--------------|
| 2 Mill Str | reet   |                  |            |              |         |          |            |         |              |
| ondon      |        |                  |            |              |         |          |            |         | the second   |
| El 2AY     |        |                  |            |              |         |          |            |         | Micco        |
| ate 24/01/ | 2020   | 12:17            |            | Desigr       | ned by  | Tmachal  | Э          |         | Drainage     |
| ile Surfac | e.mdx  |                  |            | Checke       | ed by   |          |            |         | Drainage     |
| P Solutior | ıs     |                  |            | Networ       | ck 2018 | 3.1      |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
| 1 year Ret | urn P  | eriod            | Summary of |              |         | sults by | Maxi       | mum Lev | rel (Rank 1) |
|            |        |                  |            | <u>for S</u> | torm    |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        | Water            | Surcharged | Flooded      |         |          | Pipe       |         |              |
|            |        |                  | Depth      |              |         |          |            |         | Level        |
| PN         | Name   | (m)              | (m)        | (m³)         | Cap.    | (l/s)    | (l/s)      | Status  | Exceeded     |
| s1.000     | SS1.0  | 89.362<br>89.228 | -0.183     | 0.000        | 0.08    |          | 2.6        | OK      | 7            |
| S1.001     | SS1.1  | 89.228           | -0.185     | 0.000        |         |          | 2.4        |         |              |
| S1.002     | SS1.2  | 89.052           | -0.179     | 0.000        |         |          | 4.3        |         |              |
|            |        | 89.038           |            | 0.000        |         |          | 2.3        |         |              |
|            |        | 88.779           |            | 0.000        |         |          | 2.2        |         |              |
|            |        | 88.674<br>88.642 |            | 0.000        |         |          | 7.1<br>7.6 |         |              |
|            |        | 88.642           |            | 0.000        |         |          | 1.4        | OK      |              |
|            |        | 89.036           |            | 0.000        |         |          | 2.4        | OK      |              |
|            |        | 88.865           |            | 0.000        |         |          | 4.8        |         |              |
|            |        | 87.699           |            | 0.000        |         |          | 2.2        |         | 2            |
|            |        | 87.259           |            | 0.000        |         |          | 2.2        |         |              |
| S1.007     | SS5.2  | 87.219           | -0.189     | 0.000        | 0.06    |          | 2.2        | OK      |              |
| S1.008     | SS5.3  | 86.817           |            | 0.000        |         |          | 2.2        | OK      |              |
|            |        |                  |            |              |         |          |            | -       |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  |            |              |         |          |            |         |              |
|            |        |                  | A1 ^       | 0.0.0.1.0    | Terre   |          |            |         |              |
|            |        |                  | ©19        | 82-2018      | Innov   | yze      |            |         |              |

|                                                                                                                                        | lanony                                                                                                                     | Consulting                                                                                                                                                                                                                                                                                                                                                           | Eng                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                              | Page 10                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| l2 Mill S                                                                                                                              | treet                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                              |                                                                 |
| London                                                                                                                                 |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                              | -                                                               |
| SE1 2AY                                                                                                                                |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                              | Michael                                                         |
| Date 24/0                                                                                                                              | 1/202                                                                                                                      | 0 12:17                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ned by Tmachal                                                                                                                                      | Le                                                                                           | WILLU                                                           |
| File Surf                                                                                                                              | ace.m                                                                                                                      | dx                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                           | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                   |                                                                                              | Draina                                                          |
| (P Soluti                                                                                                                              |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rk 2018.1                                                                                                                                           |                                                                                              |                                                                 |
| 30 year B                                                                                                                              | Return                                                                                                                     | Period Sum                                                                                                                                                                                                                                                                                                                                                           | mary c                                                                                                                    | o <u>f Criti</u><br>for S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .cal Results k<br>Storm                                                                                                                             | y Maximum Le                                                                                 | vel (Rank                                                       |
|                                                                                                                                        | Ie Head<br>1 Sewad<br>Nu                                                                                                   | Hot Start<br>Hot Start Leve<br>dloss Coeff (G<br>ge per hectare<br>mber of Input                                                                                                                                                                                                                                                                                     | Factor<br>(mins)<br>el (mm)<br>Global)<br>e (l/s)<br>Hydrog                                                               | 1.000<br>0<br>0.500 F<br>0.000<br>raphs 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>n Criteria</u><br>Additional Flow<br>MADD Factor<br>Low per Person p<br>Number of Storag<br>Number of Time/ <i>I</i>                             | * 10m³/ha Stor<br>Inlet Coeffieci<br>er Day (l/per/d<br>ge Structures 1                      | age 2.000<br>ent 0.800                                          |
|                                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      | ine Con                                                                                                                   | trols 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of Real 1                                                                                                                                    |                                                                                              |                                                                 |
|                                                                                                                                        |                                                                                                                            | Rainfall Moo<br>Reg:<br>M5-60 (r                                                                                                                                                                                                                                                                                                                                     | del<br>ion Scot                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>nfall Details</u><br>FSR Ra<br>I Ireland Cv (Su<br>14.000 Cv (Wi                                                                                 |                                                                                              |                                                                 |
|                                                                                                                                        | М                                                                                                                          | argin for Flo                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           | ysis Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (mm) 100.0<br>estep Fine Iner<br>tatus OFF                                                                                                          |                                                                                              |                                                                 |
|                                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                              |                                                                 |
| :                                                                                                                                      | Return                                                                                                                     | Profil<br>Duration(s) (m<br>Period(s) (ye<br>Climate Change                                                                                                                                                                                                                                                                                                          | ains)<br>ears)                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 60, 120, 180,<br>960, 1440, 2160                                                                                                                  |                                                                                              | 600,<br>5760,<br>L0080<br>100                                   |
|                                                                                                                                        | Return<br>(<br><b>US/MH</b>                                                                                                | Duration(s) (m<br>Period(s) (ye<br>Climate Change                                                                                                                                                                                                                                                                                                                    | nins)<br>ears)<br>e (%)<br>Return                                                                                         | 720,<br>Climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960, 1440, 2160<br>First (X)                                                                                                                        | 240, 360, 480,<br>, 2880, 4320, 5<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)          | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| PN                                                                                                                                     | Return<br>(<br>US/MH<br>Name                                                                                               | Duration(s) (M<br>Period(s) (ye<br>Climate Change<br><b>Storm</b>                                                                                                                                                                                                                                                                                                    | nins)<br>ears)<br>e (%)<br>Return<br>Period                                                                               | 720,<br>Climate<br>Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960, 1440, 2160<br>First (X)                                                                                                                        | 240, 360, 480,<br>, 2880, 4320, 5<br>7200, 8640, 1<br>1, 30,<br>20, 20                       | 600,<br>5760,<br>10080<br>100<br>0, 20                          |
| <b>PN</b><br>51.000                                                                                                                    | Return<br>(<br>US/MH<br>Name<br>SS1.0                                                                                      | Duration(s) (M<br>Period(s) (ye<br>Climate Change<br><b>Storm</b><br>60 Winter                                                                                                                                                                                                                                                                                       | nins)<br>ears)<br>e (%)<br>Return<br>Period<br>30                                                                         | 720,<br>Climate<br>Change<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 960, 1440, 2160<br>First (X)                                                                                                                        | 240, 360, 480,<br>, 2880, 4320, 5<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)          | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| PN<br>51.000<br>51.001                                                                                                                 | US/MH<br>Name<br>SS1.0<br>SS1.1                                                                                            | Duration(s) (m<br>Period(s) (ye<br>Llimate Change<br>Storm<br>60 Winter<br>60 Winter                                                                                                                                                                                                                                                                                 | Return<br>Period<br>30<br>30                                                                                              | 720,<br>Climate<br>Change<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960, 1440, 2160<br>First (X)<br>Surcharge                                                                                                           | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| PN<br>51.000<br>51.001                                                                                                                 | US/MH<br>Name<br>SS1.0<br>SS1.1                                                                                            | Duration(s) (m<br>Period(s) (ye<br>Llimate Change<br>Storm<br>60 Winter<br>60 Winter                                                                                                                                                                                                                                                                                 | Return<br>Period<br>30<br>30                                                                                              | 720,<br>Climate<br>Change<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960, 1440, 2160<br>First (X)<br>Surcharge                                                                                                           | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| PN<br>51.000<br>51.001                                                                                                                 | US/MH<br>Name<br>SS1.0<br>SS1.1                                                                                            | Duration(s) (m<br>Period(s) (ye<br>Llimate Change<br>Storm<br>60 Winter<br>60 Winter                                                                                                                                                                                                                                                                                 | Return<br>Period<br>30<br>30                                                                                              | 720,<br>Climate<br>Change<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960, 1440, 2160<br>First (X)<br>Surcharge                                                                                                           | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| PN<br>51.000<br>51.001                                                                                                                 | US/MH<br>Name<br>SS1.0<br>SS1.1                                                                                            | Duration(s) (m<br>Period(s) (ye<br>Llimate Change<br>Storm<br>60 Winter<br>60 Winter                                                                                                                                                                                                                                                                                 | Return<br>Period<br>30<br>30                                                                                              | 720,<br>Climate<br>Change<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960, 1440, 2160<br>First (X)<br>Surcharge                                                                                                           | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| <b>PN</b><br>51.000<br>51.001                                                                                                          | US/MH<br>Name<br>SS1.0<br>SS1.1                                                                                            | Duration(s) (m<br>Period(s) (ye<br>Llimate Change<br>Storm<br>60 Winter<br>60 Winter                                                                                                                                                                                                                                                                                 | Return<br>Period<br>30<br>30                                                                                              | 720,<br>Climate<br>Change<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960, 1440, 2160<br>First (X)<br>Surcharge                                                                                                           | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| PN<br>51.000<br>51.001                                                                                                                 | US/MH<br>Name<br>SS1.0<br>SS1.1                                                                                            | Duration(s) (m<br>Period(s) (ye<br>Llimate Change<br>Storm<br>60 Winter<br>60 Winter                                                                                                                                                                                                                                                                                 | Return<br>Period<br>30<br>30                                                                                              | 720,<br>Climate<br>Change<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960, 1440, 2160<br>First (X)<br>Surcharge                                                                                                           | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)             |
| PN<br>\$1.000<br>\$1.001<br>\$1.002<br>\$2.000<br>\$2.001<br>\$1.003<br>\$1.004<br>\$3.000<br>\$4.000<br>\$3.001                       | US/MH<br>Name<br>SS1.0<br>SS1.1<br>SS1.2<br>SS2.0<br>SS2.1<br>SS1.3<br>SS1.4<br>SS1.4<br>SS3.0<br>SS3.0<br>SS3.0<br>SS4.1  | Period(s) (ye<br>limate Change<br><b>Storm</b><br>60 Winter<br>60 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>120 Winter                                                                                                                                                                                             | nins)<br>ears)<br>e (%)<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 720,<br><b>Climate</b><br><b>change</b><br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 960, 1440, 2160<br>First (X)<br>Surcharge<br>100/1440 Winter<br>100/1440 Winter<br>100/720 Winter<br>100/60 Winter<br>100/60 Winter                 | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)<br>Overflow |
| PN<br>\$1.000<br>\$1.001<br>\$1.002<br>\$2.000<br>\$1.003<br>\$1.004<br>\$3.000<br>\$4.000<br>\$3.001<br>\$1.005                       | US/MH<br>Name<br>SS1.0<br>SS1.1<br>SS1.2<br>SS2.0<br>SS2.1<br>SS1.3<br>SS1.4<br>SS4.0<br>SS4.0<br>SS4.0<br>SS4.1<br>SS5.0  | Period(s) (ye<br>limate Change<br>Storm<br>60 Winter<br>60 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>120 Winter                                                                                                                                                                                                    | nins)<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                     | 720,<br><b>Climate</b><br><b>change</b><br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960, 1440, 2160<br>First (X)<br>Surcharge<br>100/1440 Winter<br>100/1440 Winter<br>100/30 Winter<br>100/60 Winter<br>100/960 Winter<br>30/60 Winter | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)<br>Overflow |
| PN<br>\$1.000<br>\$1.001<br>\$1.002<br>\$2.001<br>\$1.003<br>\$1.003<br>\$1.000<br>\$4.000<br>\$3.001<br>\$1.005<br>\$1.005            | Return<br>US/MH<br>Name<br>SS1.0<br>SS1.1<br>SS1.2<br>SS2.0<br>SS2.0<br>SS2.1<br>SS1.4<br>SS4.0<br>SS3.0<br>SS4.1<br>SS5.0 | Period(s) (ye<br>Limate Change<br>Storm<br>60 Winter<br>60 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>120 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>1440 Winter<br>2880 Winter                                                                                                                                                                      | <pre>mins)   Return   Period</pre>                                                                                        | 720,<br><b>Climate</b><br><b>change</b><br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20% +20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20 | 960, 1440, 2160<br>First (X)<br>Surcharge<br>100/1440 Winter<br>100/1440 Winter<br>100/30 Winter<br>100/60 Winter<br>100/960 Winter<br>30/60 Winter | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)<br>Overflow |
| PN<br>\$1.000<br>\$1.001<br>\$2.001<br>\$2.001<br>\$1.003<br>\$1.004<br>\$3.000<br>\$4.000<br>\$3.001<br>\$1.005<br>\$1.006<br>\$1.007 | US/MH<br>Name<br>SS1.0<br>SS1.1<br>SS1.2<br>SS2.0<br>SS2.1<br>SS1.3<br>SS1.4<br>SS3.0<br>SS3.0<br>SS3.0<br>SS5.1<br>SS5.2  | Period(s) (ye<br>limate Change<br>Storm<br>60 Winter<br>60 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>120 Winter                                                                                                                                                                                                    | ains)<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                     | 720,<br><b>Climate</b><br><b>change</b><br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960, 1440, 2160<br>First (X)<br>Surcharge<br>100/1440 Winter<br>100/1440 Winter<br>100/30 Winter<br>100/60 Winter<br>100/960 Winter<br>30/60 Winter | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)<br>Overflow |
| PN<br>\$1.000<br>\$1.001<br>\$2.001<br>\$2.001<br>\$1.003<br>\$1.004<br>\$3.000<br>\$4.000<br>\$3.001<br>\$1.005<br>\$1.006<br>\$1.007 | US/MH<br>Name<br>SS1.0<br>SS1.1<br>SS1.2<br>SS2.0<br>SS2.1<br>SS1.3<br>SS1.4<br>SS3.0<br>SS3.0<br>SS3.0<br>SS5.1<br>SS5.2  | Period(s) (ye<br>limate Change<br>Storm<br>60 Winter<br>60 Winter<br>60 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>60 Winter<br>120 Winter | ains)<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                     | 720,<br><b>Climate</b><br><b>change</b><br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960, 1440, 2160<br>First (X)<br>Surcharge<br>100/1440 Winter<br>100/1440 Winter<br>100/30 Winter<br>100/60 Winter<br>100/960 Winter<br>30/60 Winter | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)<br>Overflow |
| PN<br>\$1.000<br>\$1.001<br>\$2.001<br>\$2.001<br>\$1.003<br>\$1.004<br>\$3.000<br>\$4.000<br>\$3.001<br>\$1.005<br>\$1.006<br>\$1.007 | US/MH<br>Name<br>SS1.0<br>SS1.1<br>SS1.2<br>SS2.0<br>SS2.1<br>SS1.3<br>SS1.4<br>SS3.0<br>SS3.0<br>SS3.0<br>SS5.1<br>SS5.2  | Period(s) (ye<br>limate Change<br>Storm<br>60 Winter<br>60 Winter<br>60 Winter<br>60 Winter<br>120 Winter<br>120 Winter<br>60 Winter<br>120 Winter | ains)<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                     | 720,<br><b>Climate</b><br><b>change</b><br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 960, 1440, 2160<br>First (X)<br>Surcharge<br>100/1440 Winter<br>100/1440 Winter<br>100/30 Winter<br>100/60 Winter<br>100/960 Winter<br>30/60 Winter | 240, 360, 480,<br>, 2880, 4320, E<br>7200, 8640, 1<br>1, 30,<br>20, 20<br>First (Y)<br>Flood | 600,<br>5760,<br>10080<br>100<br>0, 20<br>First (Z)<br>Overflow |

# RESULTS FOR 1-in-30 YEAR STORM +20% CLIMATE CHANGE ALLOWANCE

| Barret | tt Mah         | nony Con | sulting          | Eng              |         |         |          |             | Pag        | e 11            |
|--------|----------------|----------|------------------|------------------|---------|---------|----------|-------------|------------|-----------------|
| 2 Mi   | ll Str         | reet     |                  |                  |         |         |          |             |            |                 |
| ondor  | n              |          |                  |                  |         |         |          |             |            | -               |
| 1 22   | AY             |          |                  |                  |         |         |          |             | 3.61       | COLONIA COLONIA |
| te 2   | 24/01/         | 2020 12  | :17              | D                | esigned | l by Tn | achale   |             | 1WIL       | uin age         |
| le s   | Surfac         | e.mdx    |                  | c                | hecked  | by      |          |             | Elfe       | ainage          |
| So:    | lution         | IS       |                  |                  | etwork  | -       |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
| 0 ye   | ar Ret         | turn Per | iod Sur          | nmary of         | Critica | l Resu  | lts by M | faximu      | m Level (  | Rank 1)         |
|        |                |          |                  |                  | for Sto | rm      |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          | Water            | Surcharged       | Flooded |         |          | Pipe        |            |                 |
|        | US/MH          | Overflow |                  | Depth            |         |         | Overflow |             |            | Level           |
| PN     | Name           | Act.     | (m)              | (m)              | (m³)    | Cap.    | (l/s)    | (l/s)       | Status     | Exceeded        |
| .000   | SS1.0          |          | 89.402           | -0.143           | 0.000   | 0.27    |          | 9.3         | OK         |                 |
|        | SS1.1          |          | 89.269           | -0.143<br>-0.145 | 0.000   | 0.26    |          | 9.1         | OK         |                 |
| .002   | SS1.2          |          | 89.096           | -0.135           | 0.000   | 0.33    |          | 15.5        | OK         |                 |
|        | SS2.0          |          | 89.076           |                  | 0.000   |         |          | 8.4         | OK         |                 |
|        | SS2.1          |          | 88.817           |                  | 0.000   |         |          | 8.2         | OK         |                 |
|        | SS1.3          |          | 88.767           | -0.053           |         |         |          | 25.7        | OK         |                 |
|        | SS1.4          |          | 88.729           |                  | 0.000   |         |          | 27.6        | OK         |                 |
|        | SS4.0<br>SS3.0 |          |                  |                  | 0.000   |         |          | 5.1         | OK         |                 |
|        | SS3.0<br>SS4.1 |          | 89.071<br>88.927 |                  | 0.000   |         |          | 8.6<br>17.6 | OK         |                 |
|        | SS5.0          |          | 88.283           |                  | 0.000   |         |          |             | SURCHARGED | 2               |
|        | SS5.1          |          | 87.260           |                  | 0.000   |         |          | 2.3         | OK         |                 |
|        | SS5.2          |          | 87.220           |                  | 0.000   |         |          | 2.3         | OK         |                 |
|        | SS5.3          |          | 86.817           |                  | 0.000   |         |          | 2.3         | OK         |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  |                  |         |         |          |             |            |                 |
|        |                |          |                  | ©1982            | -2018 I | nnovvz  | e        |             |            |                 |

|        |                        | iony Co:                 | nsul                                 | ting E                                                    | ng                                                                                                        |                                                                                                                                                       |                                                                         | Pag                                                                                            | e 12  |
|--------|------------------------|--------------------------|--------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|
| 12 Mil | ll Str                 | reet                     |                                      |                                                           |                                                                                                           |                                                                                                                                                       |                                                                         |                                                                                                |       |
| Londor | n                      |                          |                                      |                                                           |                                                                                                           |                                                                                                                                                       |                                                                         |                                                                                                |       |
| SE1 27 | AY                     |                          |                                      |                                                           |                                                                                                           |                                                                                                                                                       |                                                                         |                                                                                                | -     |
| Date 2 | 24/01/                 | 2020 1                   | 2:17                                 |                                                           | D                                                                                                         | esigned by Tm                                                                                                                                         | achale                                                                  | IVI                                                                                            | ци    |
|        |                        | ce.mdx                   | 4.00 • .4. 1                         |                                                           |                                                                                                           | hecked by                                                                                                                                             | a chia i c                                                              | 186                                                                                            | ainac |
| XP Sol |                        |                          |                                      |                                                           |                                                                                                           | letwork 2018.1                                                                                                                                        |                                                                         |                                                                                                |       |
| AF SUI | TUCIOI                 | 15                       |                                      |                                                           | 14                                                                                                        | etwork 2010.1                                                                                                                                         |                                                                         |                                                                                                |       |
| 100    | year l                 | Return                   | Peri                                 | .od Sur                                                   |                                                                                                           | f Critical Res<br>for Storm                                                                                                                           | ults by Max                                                             | imum Level                                                                                     | (Ranl |
|        |                        |                          |                                      |                                                           | Simu                                                                                                      | <u>lation Criteria</u>                                                                                                                                |                                                                         |                                                                                                |       |
|        |                        | Areal                    | Reduc                                | ction Fa                                                  | actor 1.0                                                                                                 | 000 Additional                                                                                                                                        | Flow - % of T                                                           | otal Flow 0                                                                                    | .000  |
|        |                        |                          | Hot S                                | Start (n                                                  | nins)                                                                                                     | 0 MADD F<br>0                                                                                                                                         | actor * 10m³/h                                                          | na Storage 2.                                                                                  | .000  |
| м      | anhala                 |                          |                                      |                                                           |                                                                                                           | 0<br>500 Flow per Per                                                                                                                                 |                                                                         |                                                                                                |       |
| 141    |                        |                          |                                      |                                                           | (l/s) 0.0                                                                                                 |                                                                                                                                                       | son per bay ()                                                          | /per/day) 0                                                                                    | .000  |
|        |                        |                          |                                      |                                                           |                                                                                                           |                                                                                                                                                       |                                                                         |                                                                                                |       |
|        |                        |                          |                                      |                                                           |                                                                                                           | hs 0 Number of S                                                                                                                                      |                                                                         |                                                                                                |       |
|        |                        |                          |                                      |                                                           |                                                                                                           | ls 1 Number of T                                                                                                                                      |                                                                         |                                                                                                |       |
|        |                        | Numbe                    | er of                                | Offlin                                                    | e Contro                                                                                                  | ls 0 Number of F                                                                                                                                      | eal Time Cont                                                           | rols O                                                                                         |       |
|        |                        |                          |                                      |                                                           | Syntheti                                                                                                  | .c Rainfall Detai                                                                                                                                     | 15                                                                      |                                                                                                |       |
|        |                        | Ra                       | infal                                | Ll Model                                                  |                                                                                                           | FSR                                                                                                                                                   |                                                                         | 300                                                                                            |       |
|        |                        |                          |                                      |                                                           |                                                                                                           | nd and Ireland C                                                                                                                                      |                                                                         |                                                                                                |       |
|        |                        |                          | M5-                                  | -60 (mm)                                                  |                                                                                                           | 14.000 C                                                                                                                                              | v (Winter) 0.8                                                          | 340                                                                                            |       |
|        |                        |                          |                                      |                                                           |                                                                                                           |                                                                                                                                                       |                                                                         |                                                                                                |       |
|        |                        | Margi                    | in fo                                |                                                           |                                                                                                           | rning (mm) 100.0                                                                                                                                      |                                                                         |                                                                                                |       |
|        |                        |                          |                                      |                                                           |                                                                                                           | s Timestep Fine                                                                                                                                       |                                                                         | us ON                                                                                          |       |
|        |                        |                          |                                      |                                                           |                                                                                                           |                                                                                                                                                       |                                                                         |                                                                                                |       |
|        |                        |                          |                                      |                                                           |                                                                                                           | DTS Status OFF                                                                                                                                        |                                                                         |                                                                                                |       |
|        |                        |                          |                                      |                                                           |                                                                                                           | DTS Status OFF                                                                                                                                        |                                                                         |                                                                                                |       |
|        |                        |                          |                                      | rofile(                                                   | s)                                                                                                        |                                                                                                                                                       | Summer                                                                  | and Winter                                                                                     |       |
|        |                        | Dura                     |                                      |                                                           | s)<br>1s) 1                                                                                               | 5, 30, 60, 120,                                                                                                                                       | Summer<br>180, 240, 360                                                 | , 480, 600,                                                                                    |       |
|        |                        | Dura                     |                                      |                                                           | s)<br>1s) 1                                                                                               |                                                                                                                                                       | Summer<br>180, 240, 360<br>2160, 2880,                                  | , 480, 600,<br>4320, 5760,                                                                     |       |
|        | Rei                    |                          | tion(                                | s) (mir                                                   | s)<br>is) 1                                                                                               | 5, 30, 60, 120,                                                                                                                                       | Summer<br>180, 240, 360<br>2160, 2880,                                  | , 480, 600,<br>4320, 5760,<br>8640, 10080                                                      |       |
|        | Ret                    | turn Per.                | tion(<br>iod(s                       | s) (mir                                                   | s)<br>s) 1<br>s)                                                                                          | 5, 30, 60, 120,                                                                                                                                       | Summer<br>180, 240, 360<br>2160, 2880,                                  | , 480, 600,<br>4320, 5760,                                                                     |       |
|        | Ret                    | turn Per.                | tion(<br>iod(s                       | s) (min                                                   | s)<br>s) 1<br>s)                                                                                          | 5, 30, 60, 120,                                                                                                                                       | Summer<br>180, 240, 360<br>2160, 2880,                                  | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100                                        |       |
|        | US/MH                  | turn Per.<br>Clim        | tion(<br>iod(s<br>ate C              | s) (min<br>) (year<br>Change (<br>Return                  | s)<br>s) 1<br>s)<br>%)<br>Climate                                                                         | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)                                                                                                       | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)          | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| PN     |                        | turn Per.<br>Clim        | tion(<br>iod(s<br>ate C              | s) (min<br>) (year<br>Change (<br>Return                  | s)<br>is) 1<br>is)<br>%)                                                                                  | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)                                                                                                       | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 3                       | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20                          |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>8640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (Z)             |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge<br>100/1440 Winter<br>100/720 Winter<br>100/30 Winter<br>100/60 Winter<br>100/960 Winter | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>(s) 1<br>(s)<br>(s)<br>(s)<br>(s)<br>(climate<br>(change)<br>+20%                                   | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 5<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |
| s1.000 | US/MH<br>Name<br>SS1.0 | turn Per<br>Clim<br>Stor | tion(<br>iod(s<br>ate C<br>m<br>nter | s) (min<br>) (year<br>Change (<br>Return<br>Period<br>100 | s)<br>s)<br>s)<br>s)<br>climate<br>change<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20%<br>+20% | 5, 30, 60, 120,<br>720, 960, 1440,<br>First (X)<br>Surcharge                                                                                          | Summer<br>180, 240, 360<br>2160, 2880,<br>7200, 3<br>First (Y)<br>Flood | , 480, 600,<br>4320, 5760,<br>6640, 10080<br>1, 30, 100<br>20, 20, 20<br>First (2)<br>Overflow |       |

# RESULTS FOR 1-in-100 YEAR STORM +20% CLIMATE CHANGE ALLOWANCE

| 2 Mill St<br>ondon<br>51 2AY<br>ate 24/01<br>ile Surfa<br>2 Solutic<br>100 year | 1/2020<br>ace.mo                  |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|---------------------------------------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------------------------------------------------|--------------------------------------|-----------------------------------|----------|-------|--------------------------|---------|
| 1 2AY<br>te 24/01<br>le Surfa<br>Solutio                                        | ace.mo                            |                                  |                                                                         |                                      |                                   |          |       |                          | . W     |
| te 24/01<br>le Surfa<br>Solutio                                                 | ace.mo                            |                                  |                                                                         |                                      |                                   |          |       |                          | 1-0     |
| le Surfa<br>Solutio                                                             | ace.mo                            |                                  |                                                                         |                                      |                                   |          |       |                          | Mirce   |
| le Surfa<br>Solutio                                                             | ace.mo                            |                                  | 7                                                                       | Desi                                 | aned h                            | y Tmacha | ale   |                          | MICTO   |
| Solutio                                                                         |                                   |                                  |                                                                         |                                      | ked by                            | -        |       |                          | Drain   |
|                                                                                 | 5.10                              |                                  |                                                                         |                                      | ork 20                            |          |       |                          |         |
| 100 year                                                                        |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 | Retu                              | rn Per                           | iod Summa:                                                              | -                                    | ritica.<br>or Stor                |          | s by  | Maximum L                | evel (F |
|                                                                                 |                                   |                                  |                                                                         | <u>1) IC</u>                         | or stor                           | 111      |       |                          |         |
|                                                                                 |                                   | Water                            | Surcharged                                                              | Flooded                              |                                   |          | Pipe  |                          |         |
|                                                                                 | US/MH                             |                                  | Depth                                                                   |                                      | Flow /                            | Overflow |       |                          | Level   |
| PN                                                                              | Name                              | (m)                              | (m)                                                                     | (m <sup>3</sup> )                    | Cap.                              | (1/s)    | (1/s) | Status                   | Exceede |
|                                                                                 |                                   |                                  |                                                                         |                                      | -                                 |          | ,     |                          | _       |
|                                                                                 |                                   | 89.421                           |                                                                         |                                      | 0.41                              |          | 13.8  | OK                       |         |
|                                                                                 |                                   | 89.376                           |                                                                         |                                      | 0.08                              |          | 2.7   | OK                       |         |
|                                                                                 |                                   | 89.348                           |                                                                         |                                      |                                   |          | 4.7   |                          |         |
|                                                                                 |                                   | 89.323<br>89.583                 |                                                                         | 0.000                                |                                   |          |       | SURCHARGED               |         |
|                                                                                 |                                   | 89.583                           |                                                                         |                                      |                                   |          |       | SURCHARGED<br>SURCHARGED |         |
|                                                                                 |                                   | 89.697                           |                                                                         |                                      |                                   |          |       | SURCHARGED               |         |
| 53.000                                                                          |                                   |                                  | -0.116                                                                  |                                      |                                   |          | 1.6   |                          |         |
|                                                                                 |                                   | 89.368                           |                                                                         | 0.000                                |                                   |          |       | SURCHARGED               |         |
|                                                                                 |                                   | 89.511                           |                                                                         | 0.000                                |                                   |          |       | SURCHARGED               |         |
| S1.005                                                                          | SS5.0                             | 89.700                           | 1.978                                                                   | 1.639                                | 0.09                              |          | 3.0   | FLOOD                    |         |
|                                                                                 |                                   | 87.266                           |                                                                         | 0.000                                |                                   |          | 3.1   | OK                       |         |
|                                                                                 |                                   | 87.227                           |                                                                         |                                      | 0.09                              |          | 3.1   | OK                       |         |
| S1.008                                                                          | SS5.3                             | 86.825                           | -0.179                                                                  | 0.000                                | 0.09                              |          | 3.1   | OK                       |         |
| OODING<br>IAN 960<br>00mm -A<br>RACTICE                                         | G IN S<br>min -<br>AS SU<br>E. AN | STORN<br>HOWE<br>ICH UN<br>Y OVE | iole is li<br>As of du<br>Ever flo<br>Nlikely t<br>Rflow W<br>On site i | RATION<br>OD DEI<br>O OCC<br>/HICH N | N GRE/<br>PTH =<br>UR IN<br>MAY O | CCUR     |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
| ASIN                                                                            |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |
|                                                                                 |                                   |                                  |                                                                         |                                      |                                   |          |       |                          |         |

©1982-2018 Innovyze

# NORTH EAST CATHCMENT SIMULATION

| 12 Mill S                                                                 |                                                                      |                                                                                                       | ing Eng                                                                                                        |                                                                                                                            |                                                                                                                                |                                                                                                                      |                                                               |                                                        |                                                         | ray                                                           | ie 1                                                                                          |
|---------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                           | Street                                                               |                                                                                                       |                                                                                                                |                                                                                                                            |                                                                                                                                |                                                                                                                      |                                                               |                                                        |                                                         | -                                                             | _                                                                                             |
| London                                                                    |                                                                      |                                                                                                       |                                                                                                                |                                                                                                                            |                                                                                                                                |                                                                                                                      |                                                               |                                                        |                                                         |                                                               | -                                                                                             |
| SE1 2AY                                                                   |                                                                      |                                                                                                       |                                                                                                                |                                                                                                                            |                                                                                                                                |                                                                                                                      |                                                               |                                                        |                                                         | Mi                                                            | <b>FID</b>                                                                                    |
| Date 16/0                                                                 |                                                                      |                                                                                                       |                                                                                                                | Dea                                                                                                                        | signed by                                                                                                                      | Tmach                                                                                                                | nale                                                          |                                                        |                                                         | E.C.                                                          | ainan                                                                                         |
| File Surf                                                                 | Eace C2.m                                                            | ndx                                                                                                   |                                                                                                                | Che                                                                                                                        | ecked by                                                                                                                       |                                                                                                                      |                                                               |                                                        |                                                         | 01                                                            | annag                                                                                         |
| XP Soluti                                                                 | ions                                                                 |                                                                                                       |                                                                                                                | Net                                                                                                                        | twork 2018                                                                                                                     | 3.1                                                                                                                  |                                                               |                                                        |                                                         |                                                               |                                                                                               |
|                                                                           | <u>stof</u>                                                          | RM SEWE                                                                                               |                                                                                                                |                                                                                                                            | the Modif:<br>iteria for                                                                                                       |                                                                                                                      |                                                               | nal M                                                  | ethod                                                   | 1                                                             |                                                                                               |
|                                                                           |                                                                      | Pip                                                                                                   | e Sizes                                                                                                        | STANDAR                                                                                                                    | RD Manhole \$                                                                                                                  | Sizes :                                                                                                              | stand.                                                        | ARD                                                    |                                                         |                                                               |                                                                                               |
| Maximum T                                                                 | Maximu<br>Time of Co<br>Fo                                           | urn Per:<br>m Rainfa<br>ncentra<br>ul Sewa                                                            | iod (yea:<br>M5-60 (r<br>Rati:<br>all (mm/)<br>tion (min<br>ge (l/s/)<br>noff Coe:<br>Des<br><u>Time</u><br>T: | rs)<br>mm) 14.<br>o R 0.<br>or)<br>ns)<br>na) 0.<br>ff. 0.<br>igned w<br><u>Area I</u><br>ime Ar<br>ins) (H                | 000                                                                                                                            | Add F<br>Min<br>Max<br>ign De<br>Vel fo<br>n Slop<br>offits<br>or Sto<br>Area<br>(ha)                                | low /<br>imum<br>pth f<br>r Aut<br>e for                      | Clim<br>Backd<br>Backd<br>or Op<br>o Des               | ate Ch<br>rop He<br>rop He<br>timisa<br>ign on          | ange (%<br>ight (n<br>ight (n<br>tion (n<br>ly (m/s           | s) 1.00                                                                                       |
|                                                                           |                                                                      |                                                                                                       |                                                                                                                |                                                                                                                            | tributing ()<br>olume (m³)                                                                                                     |                                                                                                                      |                                                               |                                                        |                                                         |                                                               |                                                                                               |
|                                                                           |                                                                      |                                                                                                       | Total                                                                                                          | Pipe V                                                                                                                     |                                                                                                                                | = 12.6                                                                                                               | 24                                                            |                                                        |                                                         |                                                               |                                                                                               |
|                                                                           |                                                                      |                                                                                                       | Total<br><u>Networ</u>                                                                                         | Pipe V<br>k Desi                                                                                                           | olume (m³)                                                                                                                     | = 12.6<br>for Si                                                                                                     | torm                                                          |                                                        |                                                         |                                                               |                                                                                               |
|                                                                           |                                                                      | L Slope                                                                                               | Total<br><u>Networ</u><br>« - Ind<br>• <b>I.Area</b>                                                           | Pipe V<br><u>k Desi</u><br>dicates<br><b>T.E.</b>                                                                          | olume (m³)<br>gn Table :                                                                                                       | = 12.6<br><u>for Si</u><br>ity < f<br><b>k</b>                                                                       | 24<br>torm<br>flow<br><b>HYD</b>                              |                                                        |                                                         | on Type                                                       | e Auto<br>Design                                                                              |
| S1.000 15                                                                 |                                                                      | L Slope<br>(1:X)<br>3 250.0                                                                           | Total <u>Networ</u> « - Inc <b>I.Area</b> (ha) 0.070                                                           | Pipe V<br><u>k Desi</u><br>dicates<br><b>T.E.</b><br>(mins)<br>4.00                                                        | gn Table :<br>pipe capaci<br>Base<br>Flow (1/s)<br>0.0                                                                         | = 12.6<br>for Si<br>ity < f<br>k<br>(mm)<br>0.600                                                                    | torm<br>flow<br>HYD<br>SECT                                   | (mm)<br>225                                            | Pipe/                                                   | <b>on Type</b><br>'Conduit                                    | Design                                                                                        |
| S1.000 15<br>S1.001 25                                                    | (m) (m)<br>5.871 0.06                                                | L Slope<br>(1:X)<br>3 250.0<br>5 135.5                                                                | Total<br><u>Networ</u><br>« - Inc<br>• I.Area<br>(ha)<br>0.070<br>0.000                                        | Pipe V<br><u>k Desi</u><br>Sicates<br><b>T.E.</b><br>(mins)<br>4.00<br>0.00                                                | gn Table :<br>pipe capaci<br>Base<br>Flow (1/s)<br>0.0                                                                         | = 12.6<br>for Sf<br>ity < f<br>k<br>(mm)<br>0.600<br>0.600                                                           | torm<br>flow<br>HYD<br>SECT                                   | <b>(mm)</b><br>225<br>225                              | Pipe/<br>Pipe/                                          | Conduit                                                       | Design                                                                                        |
| S1.000 15<br>S1.001 25                                                    | (m) (m)<br>5.871 0.06<br>5.105 0.18                                  | L Slope<br>(1:X)<br>3 250.0<br>5 135.5                                                                | Total<br><u>Networ</u><br><b>« -</b> Inc<br><b>1.Area</b><br>(ha)<br>0.070<br>0.000<br>0.106                   | Pipe V<br><u>k Desi</u><br>dicates<br><b>T.E.</b><br>(mins)<br>4.00<br>0.00<br>4.00                                        | gn Table :<br>pipe capaci<br>Base<br>Flow (1/s)<br>0.0                                                                         | = 12.6<br><u>for Si</u><br>ity < f<br><b>k</b><br>(mm)<br>0.600<br>0.600<br>0.600                                    | torm<br>flow<br>HYD<br>SECT                                   | <b>(mm)</b><br>225<br>225                              | Pipe/<br>Pipe/                                          | Conduit<br>Conduit                                            | Design                                                                                        |
| S1.000 15<br>S1.001 25                                                    | (m) (m)<br>5.871 0.06<br>5.105 0.18<br>9.747 0.07<br>Rain            | L slope<br>(1:X)<br>3 250.0<br>5 135.5<br>9 250.0<br>T.C.                                             | Total<br><u>Networ</u><br>« - Inc<br>(ha)<br>0.000<br>0.106<br><u>Ne</u><br>US/IL E                            | Pipe V<br>k Desi<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>twork<br>I.Area                                   | gn Table :<br>pipe capaci<br>Base<br>Flow (1/s)<br>0.0<br>0.0                                                                  | = 12.6<br><u>for Si</u><br>ity < f<br>(mm)<br>0.600<br>0.600<br>0.600<br><u>cable</u><br>Foul                        | 24<br>torm<br>flow<br>HYD<br>SECT<br>o<br>o<br>o              | (mm)<br>225<br>225<br>225<br>Flow                      | Pipe/<br>Pipe/<br>Pipe/<br><b>Vel</b>                   | Conduit<br>Conduit<br>Conduit                                 | Design                                                                                        |
| S1.000 15<br>S1.001 25<br>S2.000 19<br>PN                                 | (m) (m)<br>5.871 0.06<br>5.105 0.18<br>9.747 0.07<br>Rain<br>(mm/hr) | L Slope<br>(1:X)<br>3 250.0<br>5 135.5<br>9 250.0<br>T.C.<br>(mins)                                   | Total<br><u>Networ</u><br>(ha)<br>0.070<br>0.000<br>0.106<br><u>Ne</u><br>(m)                                  | Pipe V<br>k Desi<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>twork<br>I.Area<br>(ha)                   | gn Table ::<br>pipe capaci<br>Base<br>Flow (1/s)<br>0.0<br>0.0<br>0.0<br>Results T<br>Σ Base<br>Flow (1/s)                     | = 12.6<br>for Si<br>ity < f<br>(mm)<br>0.600<br>0.600<br>0.600<br>0.600<br>Cable<br>Foul<br>(1/s)                    | 24<br>torm<br>flow<br>HYD<br>SECT<br>o<br>o<br>o<br>Add<br>(1 | (mm)<br>225<br>225<br>225<br>Flow<br>/s)               | Pipe/<br>Pipe/<br>Pipe/<br><b>Vel</b><br>(m/s)          | Conduit<br>Conduit<br>Conduit<br>Conduit<br>Cap<br>(1/s)      | Design                                                                                        |
| S1.000 15<br>S1.001 25<br>S2.000 19<br>PN                                 | (m) (m)<br>5.871 0.06<br>5.105 0.18<br>9.747 0.07<br>Rain<br>(mm/hr) | L Slope<br>(1:X)<br>3 250.0<br>5 135.5<br>9 250.0<br>T.C.<br>(mins)                                   | Total<br><u>Networ</u><br>(ha)<br>0.070<br>0.000<br>0.106<br><u>Ne</u><br>(m)                                  | Pipe V<br>k Desi<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>twork<br>I.Area<br>(ha)                   | gn Table :<br>gn Table :<br>pipe capaci<br>Base<br>Flow (1/s)<br>0.0<br>0.0<br>0.0<br>Results T<br>E Base<br>Flow (1/s)<br>0.0 | = 12.6<br><u>for Si</u><br>ity < f<br>(mm)<br>0.600<br>0.600<br>0.600<br><u>cable</u><br>Foul                        | 24<br>torm<br>flow<br>HYD<br>sect<br>o<br>o<br>o<br>Add<br>(1 | (mm)<br>225<br>225<br>225<br>Flow<br>/s)<br>0.0        | Pipe/<br>Pipe/<br>Vel<br>(m/s)<br>0.82                  | Conduit<br>Conduit<br>Conduit<br>Conduit<br>Cap<br>(1/s)      | Design<br>t<br>t<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>f<br>g.5 |
| \$1.000 15<br>\$1.001 25<br>\$2.000 15<br><b>PN</b><br>\$1.000<br>\$1.001 | (m) (m)<br>5.871 0.06<br>5.105 0.18<br>9.747 0.07<br>Rain<br>(mm/hr) | <b>I Slope</b><br>(1:X)<br>3 250.0<br>5 135.5<br>9 250.0<br><b>T.C.</b><br>(mins)<br>4.32 (<br>4.69 ( | Total<br><u>Networ</u><br>(ha)<br>0.070<br>0.000<br>0.106<br><u>Ne</u><br>US/IL 2<br>(m)<br>87.775<br>87.7712  | Pipe V<br>k Desi<br>dicates<br>T.E.<br>(mins)<br>4.00<br>0.00<br>4.00<br>4.00<br>twork<br>I.Area<br>(ha)<br>0.070<br>0.070 | gn Table :<br>gn Table :<br>pipe capaci<br>Base<br>Flow (1/s)<br>0.0<br>0.0<br>0.0<br>Results T<br>E Base<br>Flow (1/s)<br>0.0 | = 12.6<br>for S1<br>k (mm)<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.600<br>0.000<br>0.000<br>0.000 | 24<br>torm<br>flow<br>HYD<br>SECT<br>o<br>o<br>o<br>Add<br>(1 | (mm)<br>225<br>225<br>225<br>Flow<br>/s)<br>0.0<br>0.0 | Pipe/<br>Pipe/<br>Pipe/<br>Vel<br>(m/s)<br>0.82<br>1.12 | Conduit<br>Conduit<br>Conduit<br>Cap<br>(1/s)<br>32.7<br>44.6 | Design<br>t<br>t<br>Flow<br>(1/s)<br>9.5<br>9.5                                               |

| arrett           | Mahor         | ny Cor         | ısulti | .ng Eng        |        |                      |             |     |     |       | Pag                | e 2             |
|------------------|---------------|----------------|--------|----------------|--------|----------------------|-------------|-----|-----|-------|--------------------|-----------------|
| 2 Mill           | Stree         | et             |        |                |        |                      |             |     |     |       |                    |                 |
| ondon            |               |                |        |                |        |                      |             |     |     |       |                    | -               |
| E1 2AY           |               |                |        |                |        |                      |             |     |     |       | 1100               | and a           |
| ate 16.          | /01/20        | 20 16          | 5:38   |                | Des    | signed by            | Tmach       | ale |     |       | - WI               | ų u             |
| ile Su           |               |                |        |                |        | ecked by             |             |     |     |       | 06                 | ainac           |
| P Solu           |               | 02.110         | A25    |                |        | twork 2018           | : 1         |     |     |       |                    | 100             |
| 1 0014           | 0110          |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        | <u>Networ</u>  | k Desi | gn Table 1           | Eor St      |     |     |       |                    |                 |
| PN               | Length<br>(m) |                | -      | I.Area<br>(ha) |        | Base<br>Flow (l/s)   | k<br>(mm)   |     |     | Secti | on Type            | e Auto<br>Desig |
| S1 002           | 25 568        | 0 102          | 250 0  | 0.044          | 0.00   | 0.0                  | 0.600       | 0   | 225 | Pine/ | Conduit            |                 |
|                  |               |                |        | 0.058          |        |                      | 0.600       |     |     |       | Conduit            |                 |
| S3.000           | 34.941        | 0.175          | 200.0  | 0.159          | 4.00   | 0.0                  | 0.600       | 0   | 225 | Pipe/ | Conduit            | 0               |
| S3.001           | 29.067        | 0.145          | 200.0  | 0.000          | 0.00   | 0.0                  | 0.600       | 0   | 225 | Pipe/ | Conduit            | 1               |
| S3.002           | 30.147        | 0.134          | 225.0  | 0.000          | 0.00   | 0.0                  | 0.600       | 0   | 225 | Pipe/ | Conduit            |                 |
| S4.000           | 22.744        | 0.114          | 199.5  | 0.202          | 4.00   | 0.0                  | 0.600       | 0   | 225 | Pipe/ | Conduit            | đ               |
| S1.004           | 18.125        | 0.073          | 250.0  | 0.000          | 0.00   | 0.0                  | 0.600       | 0   | 225 | Pine/ | Conduit            | -               |
|                  |               |                |        | 0.100          |        |                      |             |     |     |       | Conduit<br>Conduit |                 |
| S1.006           | 7.633         | 0.031          | 246.2  | 0.065          | 0.00   | 0.0                  | 0.600       | 0   | 225 | Pipe/ | Conduit            | -               |
|                  |               |                |        | 0.033          |        |                      |             |     |     |       | Conduit            | -               |
| S1.008           | 12.535        | 0.050          | 250.7  | 0.000          | 0.00   | 0.0                  | 0.600       | 0   | 375 | Pipe/ | Conduit            | 8               |
|                  |               |                |        | <u>N</u> e     | etwork | <u>Results</u> T     | <u>able</u> |     |     |       |                    |                 |
| PN               | Rai<br>(mm/   | in 1<br>hr) (n |        | US/IL Σ<br>(m) |        | Σ Base<br>Flow (l/s) |             |     |     |       | Cap<br>(1/s)       | Flow<br>(1/s)   |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
| \$1.00<br>\$1.00 |               |                | 5.21 8 | 37.526         | 0.220  |                      |             |     |     | 0.82  | 32.7<br>32.7«      | 29.8<br>37.6    |
| 01.UC            | ,S JU         |                | 0.70 ( |                | 0.270  | 0.0                  | 0.0         |     | 0.0 | 0.02  | 52.7K              | 57.0            |
| s3.00            | 0 50          | .00            | 4.63 8 | 37.775         | 0.159  | 0.0                  | 0.0         |     | 0.0 | 0.92  | 36.6               | 21.5            |
| S3.00            |               |                |        | 37.600         | 0.159  | 0.0                  | 0.0         |     |     |       | 36.6               |                 |
| S3.00            | )2 50         | .00            | 5.74 8 | 37.455         | 0.159  | 0.0                  | 0.0         |     | 0.0 | 0.87  | 34.5               | 21.5            |
| S4.00            | 0 50          | .00            | 4.41 8 | 87.875         | 0.202  | 0.0                  | 0.0         |     | 0.0 | 0.92  | 36.7               | 27.4            |
| S1.00            | 04 50         | .00            | 6.10 8 | 37.327         | 0.639  | 0.0                  | 0.0         |     | 0.0 | 0.82  | 32.7«              | 86.5            |
| S1.00            |               |                | 6.39 8 |                | 0.739  |                      |             |     |     |       | 32.7«              |                 |
| S1.00            |               |                | 6.54 8 |                | 0.804  |                      |             |     |     |       | 33.0«              |                 |
| S1.00            |               |                |        | 36.768         | 0.837  |                      | 0.0         |     |     |       | 32.7«              |                 |
| S1.00            | 08 50         | .00            | 7.04 8 | 36.706         | 0.837  | 0.0                  | 0.0         |     | 0.0 | 1.14  | 125.9              | 113.3           |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |
|                  |               |                |        |                |        |                      |             |     |     |       |                    |                 |

| main         main <th< th=""><th></th><th></th><th>-</th><th>onsu</th><th>lting E</th><th>ng</th><th></th><th></th><th></th><th></th><th>Page 3</th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                             |                |        | -     | onsu | lting E | ng        |         |          |           |         | Page 3        |      |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------|------|---------|-----------|---------|----------|-----------|---------|---------------|------|-------|
| Math       MH       MH       Pipe Out       Pipe Out       Pipes In       Invert       Diameter       R       Pipes In       Invert       Diameter       R       Pipes In       State 120       State 120 <th>12 Mil</th> <th>ll Str</th> <th>reet</th> <th></th>                                                                                                                                                                                                                                | 12 Mil         | ll Str | reet  |      |         |           |         |          |           |         |               |      |       |
| Mathe         Designed by Tmachale<br>Checked by         Machale<br>Checked by           Manhole         Schedules         for Storm           MH         MH         MH         Connection<br>(m)         MH         MH         Pipe Out<br>(mm)         Pipe Out<br>Level (m)         Pipes In<br>(mm)         Diameter         Pipes In<br>Level (m)         Diameter         Pipe Out<br>Level (m)         Diameter         Pipe Out<br>Level (m)         Diameter         Dischape Out         Diameter <t< th=""><th>Londor</th><th>n</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1000</th><th></th><th></th></t<>                     | Londor         | n      |       |      |         |           |         |          |           |         | 1000          |      |       |
| Mate       16/01/2020       16:38       Designed by Tmachale       Designed by Tmachale         Sile       Surface C2.mdx       Checked by       Decided by         Metwork 2018.1         Manhole Schedules for Storm         Manhole       Depth (m)       MH       MH       MH       MH       Pipe Out (mm)       Pipe Out (mm)       Pipes In (mm)       Pipes In (mm)       Pipes In (mm)       Deameter (mm)       Pipes In (mm)       Deameter (mm)       Pipes In (mm)       Deameter (mm)       Pipes In (mm)       Pipe In (mm)       Pipe In (mm)       Pipe In (mm)       Pipes In (mm)       Pipe In In (mm)       Pipe In In (mm)       Pipe In In (mm)                                                                                                                                                                                                                                                                                                                                                     | SE1 2 <i>1</i> | AY     |       |      |         |           |         |          |           |         | Mirro         | 100  |       |
| Checked by       Network 2018.1         Manhole Schedules for Storm       Pipe Out       Pipes In         MH       MH       MH       MH       MH       MH       Connection       MH       Pinestication                                                                                                                                                                                                                                                                                                                | Date 1         | 16/01/ | 2020  | 16:3 | 8       | Des       | igned   | by Tmach | ale       |         | PROJECT AND A | 1000 |       |
| MH         MH         MH         MH         MH         MH         MH         MH         MH         Pipe Out<br>(mm)         Diameter         Pipe Out<br>(mm)                                                             | File S         | Surfac | e C2. | mdx  |         | Che       | cked b  | У        |           |         | Dialite       | ige  |       |
| MH<br>NameMH<br>DepthMH<br>DepthMH<br>Dam., L*W<br>(mm)MH<br>PNPN<br>Invert<br>Invert<br>Nevel (m)Pipe Ot<br>Invert<br>methPNPipes In<br>Invert<br>methPipes In<br>methPipes In<br>methPipe In<                                                                                                                                                                                                                                                                                                                                                                                                             | XP Sol         | lution | IS    |      |         | Net       | work 2  | 018.1    |           |         |               |      |       |
| Name         CL (m)         Depth<br>(m)         Connection         Diam., L*W<br>(mm)         PN         Invert<br>Level (m)         Diametry<br>(mm)         PN         Invert<br>Level (m)         Diametry<br>(mm)         PN         Invert<br>Level (m)         Diametry<br>(mm)         Diametry<br>Level (m)         Diametry Level (m)         Diametry Level (m) |                |        |       |      | Mar     | nhole Sch | edules  | for Stor | <u>cm</u> |         |               |      |       |
| Mail         (m)         (mm)         Level (m)         (mm)         Level (m)         (mm)         Level (m)         (mm)         (mm) <th>MH</th> <th>MH</th> <th>MH</th> <th></th> <th>МН</th> <th>MH</th> <th></th> <th>Pipe Out</th> <th></th> <th> </th> <th>Pipes In</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                             | MH             | MH     | MH    |      | МН      | MH        |         | Pipe Out |           |         | Pipes In      |      |       |
| SS.1       89.000       1.28       Open Manhole       1200       \$1.001       87.712       225       \$1.000       87.712       225         SS.0       88.750       1.125       Open Manhole       1200       \$2.000       87.625       225       \$1.001       87.526       225       \$2.000       87.526       225       \$2.000       87.526       225       \$2.000       87.526       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.500       225       \$3.000       87.775       225       \$3.001       87.600       225       \$3.001       87.600       225       \$3.001       87.600       225       \$3.001       87.425       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.424       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Name (         | CL (m) |       | Conr | nection |           | PN      |          |           | PN      |               |      |       |
| 837.0       88.750       1.125       open Manhole       1200       \$2.000       87.625       225       \$1.001       67.526       225       \$2.000       87.526       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.546       225       \$2.000       87.626       225       \$2.000       87.424       225       \$2.000       87.424       225       \$2.000       87.424       225       \$2.000       87.424       225       \$2.000       87.424       225       \$2.000       87.424       225       \$2.000       87.424       225       \$2.000       87.455       225       \$2.000       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.001       87.455       225       \$3.002       87.327       225       \$3.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ss6.0          | 88.500 | 0.725 | Open | Manhole | 1200      | s1.000  | 87.775   | 225       |         |               |      |       |
| 38.8.2       88.600       1.074       open Manhole       1200       \$1.002       \$7.526       225       \$2.000       \$7.526       225       \$2.000       \$7.546       225       \$2         \$8.8.3       88.750       1.326       open Manhole       1200       \$1.003       \$7.424       225       \$1.002       \$7.424       225       \$2         \$8.8.3       88.750       1.326       open Manhole       1200       \$3.000       \$7.775       225       \$3.000       \$7.455       225       \$3.000       \$7.455       225       \$3.000       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.001       \$7.455       225       \$3.002       \$7.321       225       \$3.002       \$7.321       225       \$3.002       \$7.321       225       \$3.002       \$7.321       225       \$3.002       \$7.321       225       \$3.002       \$7.321       225       \$3.002       \$7.321       225       \$3.002       \$7.57                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS6.1          | 89.000 |       | Open | Manhole | 1200      | S1.001  | 87.712   | 225       | S1.000  | 87.712        | 2:   | 25    |
| sea         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |        |       | Open | Manhole | 1200      |         | 87.625   | 225       |         |               |      |       |
| 88.5.3       88.750       1.326       open Manhole       1200       \$1.003       87.424       225       \$1.002       \$7.424       225         88.8.0       88.500       0.725       open Manhole       1200       \$3.000       87.775       225       \$3.000       87.600       225         88.8.0       1.200       Open Manhole       1200       \$3.001       87.600       225       \$3.000       87.455       225         88.8.0       1.200       Open Manhole       1200       \$3.002       87.455       225       \$3.001       87.455       225         88.70       1.125       Open Manhole       1200       \$3.002       87.457       225       \$3.001       87.455       225         85.4       88.750       1.429       Open Manhole       1200       \$1.004       87.327       225       \$1.003       87.321       225         85.5       88.750       1.496       Open Manhole       1200       \$1.005       87.255       225       \$1.004       87.255       225         85.6       88.750       1.496       Open Manhole       1200       \$1.006       87.199       225       \$1.004       87.255       225         85.6       88.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS6.2          | 88.600 | 1.074 | Open | Manhole | 1200      | S1.002  | 87.526   | 225       | S1.001  | 87.526        | 21   | 25    |
| 88.50       88.500       0.725       Open Manhole       1200       \$3.000       87.775       225       \$3.000       87.600       225         88.80       1.200       open Manhole       1200       \$3.001       87.600       225       \$3.000       87.455       225         88.80       1.200       1.545       Open Manhole       1200       \$3.002       87.455       225       \$3.001       87.455       225         88.00       1.125       Open Manhole       1200       \$3.002       87.455       225       \$3.001       87.455       225         88.70       1.429       Open Manhole       1200       \$1.004       87.327       225       \$1.003       87.327       225         88.75       1.429       Open Manhole       1200       \$1.005       87.255       225       \$1.000       87.321       225         88.75       1.496       Open Manhole       1200       \$1.005       87.255       225       \$1.004       87.255       225         88.6       88.750       1.496       Open Manhole       1200       \$1.005       87.255       225       \$1.005       87.199       225         88.750       1.551       Open Manhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |        |       |      |         |           |         |          |           | \$2.000 | 87.546        |      |       |
| 88.8.0       1.2.0       open Manhole       1200       \$3.001       87.600       225       \$3.000       87.600       225         88.8.2       89.000       1.545       open Manhole       1200       \$3.002       87.455       225       \$3.001       87.455       225         89.000       1.125       open Manhole       1200       \$3.002       87.455       225       \$3.001       87.455       225         86.7       1.429       open Manhole       1200       \$1.004       87.327       225       \$1.003       87.327       225         \$3.65.5       88.750       1.496       open Manhole       1200       \$1.005       87.255       225       \$1.000       87.761       225         \$86.6       88.750       1.496       open Manhole       1200       \$1.005       87.255       225       \$1.006       87.199       225         \$86.7       88.750       1.551       open Manhole       1200       \$1.007       86.766       225       \$1.006       87.199       225         \$86.7       88.750       1.992       open Manhole       1200       \$1.007       86.766       225       \$1.006       87.168       225       40         \$85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |        |       | Open | Manhole | 1200      | S1.003  | 87.424   | 225       | S1.002  | 87.424        | 21   | 25    |
| 88.2       89.000       1.545       open Manhole       1200       \$3.002       87.455       225       \$3.001       87.455       225         89.000       1.125       open Manhole       1200       \$4.000       87.875       225       \$1.003       87.327       225         86.4       88.750       1.429       open Manhole       1200       \$1.004       87.327       225       \$1.003       87.327       225         86.5       88.750       1.496       open Manhole       1200       \$1.005       87.255       225       \$1.000       87.761       225         86.6       88.750       1.551       open Manhole       1200       \$1.005       87.255       225       \$1.006       87.195       225         86.7       88.750       1.551       open Manhole       1200       \$1.007       86.768       225       \$1.005       87.199       225         86.75       1.982       open Manhole       1200       \$1.007       86.766       225       \$1.006       87.168       225         85.4       88.750       1.992       open Manhole       1350       \$1.008       86.706       375       \$1.007       86.706       225       40 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                           |                |        |       | -    |         | 1200      |         |          |           |         |               |      |       |
| 89.000       1.125       open Manhole       1200       \$4.000       87.875       225       \$1.003       87.327       225         \$36.4       88.750       1.429       open Manhole       1200       \$1.004       87.327       225       \$1.003       87.327       225         \$3.002       87.321       225       \$3.002       87.321       225       \$43         \$36.5       88.750       1.496       Open Manhole       1200       \$1.005       87.255       225       \$1.004       87.255       225         \$36.6       88.750       1.551       Open Manhole       1200       \$1.006       87.199       225       \$1.005       87.199       225         \$36.7       88.750       1.592       Open Manhole       1200       \$1.007       86.768       225       \$1.006       87.168       225         \$36.7       88.750       1.992       Open Manhole       1200       \$1.007       86.766       225       \$1.006       87.168       225       \$40         \$35.4       88.750       2.044       Open Manhole       1350       \$1.008       86.706       375       \$1.007       86.706       225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |        |       | Open | Manhole | 1200      | S3.001  | 87.600   | 225       | s3.000  | 87.600        | 23   | 25    |
| SS6.4       88.750       1.429       Open Manhole       1200       \$1.004       87.327       225       \$1.003       87.327       225         \$3.002       87.321       225       \$3.002       87.321       225         \$3.65       88.750       1.496       Open Manhole       1200       \$1.005       87.255       225       \$1.004       67.255       225         \$3.66       88.750       1.551       Open Manhole       1200       \$1.006       87.199       225       \$1.005       87.199       225         \$3.67       88.750       1.982       Open Manhole       1200       \$1.007       86.768       225       \$1.006       87.199       225         \$3.67       88.750       1.982       Open Manhole       1200       \$1.007       86.768       225       \$1.006       87.168       225         \$3.68       88.750       2.044       Open Manhole       1350       \$1.008       86.706       375       \$1.007       86.706       225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS8.2          | 89.000 | 1.545 | Open | Manhole | 1200      | \$3.002 | 87.455   | 225       | S3.001  | 87.455        | 23   | 25    |
| state       state <td< td=""><td>SS9.0</td><td>89.000</td><td>1.125</td><td>Open</td><td>Manhole</td><td>1200</td><td>S4.000</td><td>87.875</td><td>225</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                             | SS9.0          | 89.000 | 1.125 | Open | Manhole | 1200      | S4.000  | 87.875   | 225       |         |               |      |       |
| S86.5         88.750         1.496         Open Manhole         1200         \$1.005         87.255         225         \$1.004         87.255         225           \$36.7         88.750         1.551         Open Manhole         1200         \$1.005         87.255         225         \$1.004         87.255         225           \$36.7         88.750         1.551         Open Manhole         1200         \$1.006         87.199         225         \$1.005         87.199         225           \$36.7         88.750         1.982         Open Manhole         1200         \$1.007         86.766         225         \$1.006         87.168         225         400           \$35.4         88.750         2.044         Open Manhole         1350         \$1.008         86.706         375         \$1.007         86.706         225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS6.4          | 88.750 | 1.429 | Open | Manhole | 1200      | S1.004  | 87.327   | 225       | S1.003  | 87.327        |      |       |
| 88.55       88.750       1.496       Open Manhole       1200       \$1.005       87.255       225       \$1.004       87.255       225         83.6.6       88.750       1.551       Open Manhole       1200       \$1.006       87.199       225       \$1.005       87.199       225         85.7       88.750       1.982       Open Manhole       1200       \$1.007       86.768       225       \$1.006       87.168       225         85.7       88.750       2.044       Open Manhole       1350       \$1.008       86.706       375       \$1.007       86.706       225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |        |       |      |         |           |         |          |           |         |               |      |       |
| SS6.6         88.750         1.551         Open Manhole         1200         \$1.006         87.199         225         \$1.005         87.199         225           \$86.7         88.750         1.982         open Manhole         1200         \$1.007         86.768         225         \$1.006         87.199         225           \$85.7         88.750         1.982         open Manhole         1200         \$1.007         86.768         225         \$1.006         87.168         225         40           \$85.7         88.750         2.044         open Manhole         1350         \$1.008         86.706         375         \$1.007         86.706         225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |        |       |      |         |           |         |          |           | S4.000  | 87.761        | 2:   | 25 43 |
| SS.7         88.750         1.982         Open Manhole         1200         \$1.007         86.768         225         \$1.006         \$7.168         225         40           SS.4         88.750         2.044         Open Manhole         1350         \$1.008         86.706         375         \$1.007         86.706         225         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS6.5          | 88.750 | 1.496 | Open | Manhole | 1200      | S1.005  | 87.255   | 225       | S1.004  | 87.255        | 23   | 25    |
| S5.4 88.750 2.044 Open Manhole 1350 S1.008 86.706 375 S1.007 86.706 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.6          | 88.750 | 1.551 | Open | Manhole |           | 1       | 87.199   | 225       | S1.005  | 87.199        | 23   | 25    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS6.7          | 88.750 | 1.982 | Open | Manhole | 1200      | S1.007  | 86.768   | 225       | S1.006  | 87.168        | 2:   | 25 40 |
| S 88.000 1.344 Open Manhole 0 OUTFALL S1.008 86.656 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS5.4          | 88.750 | 2.044 | Open | Manhole | 1350      | S1.008  | 86.706   | 375       | S1.007  | 86.706        | 2:   | 25    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S              | 88.000 | 1.344 | Open | Manhole | 0         |         | OUTFALL  |           | S1.008  | 86.656        | 31   | 75    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |        |       |      |         |           |         |          |           |         |               |      |       |

| Barrett Mahony Consulting Eng |                      | Page 4   |
|-------------------------------|----------------------|----------|
| 12 Mill Street                |                      |          |
| London                        |                      |          |
| SE1 2AY                       |                      | Micco    |
| Date 16/01/2020 16:38         | Designed by Tmachale | Drainage |
| File Surface C2.mdx           | Checked by           | uramaye  |
| XP Solutions                  | Network 2018.1       |          |

#### PIPELINE SCHEDULES for Storm

#### <u>Upstream Manhole</u>

| PN                                                                                               |                                                                                                                                      | Diam<br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                        |                                                                                                                              | I.Level I<br>(m)                                                                                                                                                                                                                                                                                                                                  | D.Depth (m)                                                                                                                                  |                                                                                                                                        | H Nection                                                                                       | H DIAM., L*W                                                                                                                                         |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                  | Sect                                                                                                                                 | (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Name                                                                                                                                                                                                                                                                                                   | (m)                                                                                                                          | (m)                                                                                                                                                                                                                                                                                                                                               | (m)                                                                                                                                          | Conne                                                                                                                                  | ection                                                                                          | (mm)                                                                                                                                                 |
| S1.000                                                                                           | ) 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.0                                                                                                                                                                                                                                                                                                  | 88.500                                                                                                                       | 87.775                                                                                                                                                                                                                                                                                                                                            | 0.500                                                                                                                                        | Open M                                                                                                                                 | Ianhole                                                                                         | 1200                                                                                                                                                 |
| S1.001                                                                                           | . 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.1                                                                                                                                                                                                                                                                                                  | 89.000                                                                                                                       | 87.712                                                                                                                                                                                                                                                                                                                                            | 1.063                                                                                                                                        | Open M                                                                                                                                 | Ianhole                                                                                         | 1200                                                                                                                                                 |
| S2.000                                                                                           | ) o                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS7.0                                                                                                                                                                                                                                                                                                  | 88.750                                                                                                                       | 87.625                                                                                                                                                                                                                                                                                                                                            | 0.900                                                                                                                                        | Open M                                                                                                                                 | íanhole                                                                                         | 1200                                                                                                                                                 |
| s1.002                                                                                           | 2 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.2                                                                                                                                                                                                                                                                                                  | 88.600                                                                                                                       | 87.526                                                                                                                                                                                                                                                                                                                                            | 0.849                                                                                                                                        | Open M                                                                                                                                 | Ianhole                                                                                         | 1200                                                                                                                                                 |
| S1.003                                                                                           | 8 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.3                                                                                                                                                                                                                                                                                                  | 88.750                                                                                                                       | 87.424                                                                                                                                                                                                                                                                                                                                            | 1.101                                                                                                                                        | Open M                                                                                                                                 | íanhole                                                                                         | 1200                                                                                                                                                 |
| S3.000                                                                                           | ) 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS8.0                                                                                                                                                                                                                                                                                                  | 88.500                                                                                                                       | 87.775                                                                                                                                                                                                                                                                                                                                            | 0.500                                                                                                                                        |                                                                                                                                        |                                                                                                 | 1200                                                                                                                                                 |
| S3.001                                                                                           | . 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS8.1                                                                                                                                                                                                                                                                                                  | 88.800                                                                                                                       | 87.600                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              |                                                                                                                                        |                                                                                                 | 1200                                                                                                                                                 |
| S3.002                                                                                           | 2 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS8.2                                                                                                                                                                                                                                                                                                  | 89.000                                                                                                                       | 87.455                                                                                                                                                                                                                                                                                                                                            | 1.320                                                                                                                                        | Open M                                                                                                                                 | Ianhole                                                                                         | 1200                                                                                                                                                 |
| S4.000                                                                                           | ) 0                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS9.0                                                                                                                                                                                                                                                                                                  | 89.000                                                                                                                       | 87.875                                                                                                                                                                                                                                                                                                                                            | 0.900                                                                                                                                        | Open M                                                                                                                                 | <i>ianhole</i>                                                                                  | 1200                                                                                                                                                 |
| S1.004                                                                                           | 0                                                                                                                                    | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.4                                                                                                                                                                                                                                                                                                  | 88.750                                                                                                                       | 87.327                                                                                                                                                                                                                                                                                                                                            | 1.198                                                                                                                                        | Open M                                                                                                                                 | ianhole                                                                                         | 1200                                                                                                                                                 |
| S1.005                                                                                           | i o                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.5                                                                                                                                                                                                                                                                                                  | 88.750                                                                                                                       | 87.255                                                                                                                                                                                                                                                                                                                                            | 1.270                                                                                                                                        | Open M                                                                                                                                 | Ianhole                                                                                         | 1200                                                                                                                                                 |
| S1.006                                                                                           | 6 o                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.6                                                                                                                                                                                                                                                                                                  | 88.750                                                                                                                       | 87.199                                                                                                                                                                                                                                                                                                                                            | 1.326                                                                                                                                        | Open M                                                                                                                                 | íanhole                                                                                         | 1200                                                                                                                                                 |
| S1.007                                                                                           | ' o                                                                                                                                  | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS6.7                                                                                                                                                                                                                                                                                                  | 88.750                                                                                                                       | 86.768                                                                                                                                                                                                                                                                                                                                            | 1.757                                                                                                                                        | Open M                                                                                                                                 | íanhole                                                                                         | 1200                                                                                                                                                 |
| S1.008                                                                                           | 8 0                                                                                                                                  | 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS5.4                                                                                                                                                                                                                                                                                                  | 88.750                                                                                                                       | 86.706                                                                                                                                                                                                                                                                                                                                            | 1.669                                                                                                                                        | Open M                                                                                                                                 | íanhole                                                                                         | 1350                                                                                                                                                 |
|                                                                                                  |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | Downs                                                                                                                        | stream M                                                                                                                                                                                                                                                                                                                                          | lanhole                                                                                                                                      |                                                                                                                                        |                                                                                                 |                                                                                                                                                      |
| PN                                                                                               | Length<br>(m)                                                                                                                        | Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        |                                                                                                                              | stream M<br>. I.Level<br>(m)                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              | n                                                                                                                                      | MH                                                                                              | MH DIAM., L*W<br>(mm)                                                                                                                                |
|                                                                                                  | (m)                                                                                                                                  | (1:X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Name                                                                                                                                                                                                                                                                                                   | C.Level<br>(m)                                                                                                               | . I.Level<br>(m)                                                                                                                                                                                                                                                                                                                                  | D.Deptl<br>(m)                                                                                                                               | n<br>Coni                                                                                                                              | nection                                                                                         | (mm)                                                                                                                                                 |
| 51.000                                                                                           | (m)<br>15.871                                                                                                                        | (1:X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Name<br>SS6.1                                                                                                                                                                                                                                                                                          | C.Level<br>(m)<br>89.000                                                                                                     | . I.Level<br>(m)<br>87.712                                                                                                                                                                                                                                                                                                                        | D.Deptl<br>(m)                                                                                                                               | n<br>Coni<br>3 Open                                                                                                                    | <b>nection</b><br>Manhole                                                                       | (mm)<br>1200                                                                                                                                         |
| s1.000                                                                                           | (m)<br>15.871                                                                                                                        | (1:X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Name<br>SS6.1                                                                                                                                                                                                                                                                                          | C.Level<br>(m)<br>89.000                                                                                                     | . I.Level<br>(m)<br>87.712                                                                                                                                                                                                                                                                                                                        | D.Deptl<br>(m)                                                                                                                               | n<br>Coni<br>3 Open                                                                                                                    | nection                                                                                         | (mm)<br>1200                                                                                                                                         |
| s1.000<br>s1.001                                                                                 | (m)<br>15.871<br>25.105                                                                                                              | (1:X)<br>250.0<br>135.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name<br>SS6.1<br>SS6.2                                                                                                                                                                                                                                                                                 | C.Level<br>(m)<br>89.000<br>88.600                                                                                           | (m)<br>87.712<br>87.526                                                                                                                                                                                                                                                                                                                           | D.Deptl<br>(m)<br>1.063                                                                                                                      | n<br>Coni<br>3 Open<br>9 Open                                                                                                          | <b>nection</b><br>Manhole                                                                       | (mm)<br>1200<br>1200                                                                                                                                 |
| PN<br>\$1.000<br>\$1.001<br>\$2.000<br>\$1.002                                                   | (m)<br>15.871<br>25.105<br>19.747                                                                                                    | (1:X)<br>250.0<br>135.5<br>250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Name<br>5 SS6.1<br>5 SS6.2<br>5 SS6.2                                                                                                                                                                                                                                                                  | C.Level<br>(m)<br>89.000<br>88.600<br>88.600                                                                                 | <ul> <li>I.Level         <ul> <li>(m)</li> <li>87.712</li> <li>87.526</li> <li>87.546</li> </ul> </li> </ul>                                                                                                                                                                                                                                      | D.Deptl<br>(m)<br>1.063<br>0.849                                                                                                             | n<br>Coni<br>3 Open<br>9 Open<br>9 Open                                                                                                | <b>Manhole</b><br>Manhole<br>Manhole                                                            | (mm)<br>1200<br>1200<br>1200                                                                                                                         |
| s1.000<br>s1.001<br>s2.000<br>s1.002                                                             | (m)<br>15.871<br>25.105<br>19.747<br>25.568                                                                                          | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name<br>5 SS6.1<br>5 SS6.2<br>5 SS6.2<br>5 SS6.2<br>5 SS6.3                                                                                                                                                                                                                                            | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.600                                                                       | . I.Level<br>(m)<br>87.712<br>87.526<br>87.546<br>87.546                                                                                                                                                                                                                                                                                          | D.Deptl<br>(m)<br>1.063<br>0.842<br>0.823                                                                                                    | n Coni<br>3 Open<br>9 Open<br>9 Open<br>1 Open                                                                                         | Manhole<br>Manhole<br>Manhole<br>Manhole                                                        | (mm)<br>1200<br>1200<br>1200<br>1200                                                                                                                 |
| s1.000<br>s1.001<br>s2.000<br>s1.002<br>s1.003                                                   | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233                                                                                | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.3</li> <li>SS6.4</li> </ul>                                                                                                                                                                                     | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.750<br>88.750                                                             | <ul> <li>I.Level<br/>(m)</li> <li>87.712</li> <li>87.526</li> <li>87.546</li> <li>87.424</li> <li>87.327</li> </ul>                                                                                                                                                                                                                               | D.Deptl<br>(m)<br>1.063<br>0.849<br>0.829<br>1.109                                                                                           | Coni<br>3 Open<br>9 Open<br>9 Open<br>1 Open<br>3 Open                                                                                 | Manhole<br>Manhole<br>Manhole<br>Manhole                                                        | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200                                                                                                         |
| 51.000<br>51.001<br>52.000<br>51.002<br>51.003<br>53.000<br>53.001                               | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233<br>34.941<br>29.067                                                            | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.4</li> <li>SS8.1</li> <li>SS8.2</li> </ul>                                                                                                                                                                      | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.750<br>88.750<br>88.750<br>88.800<br>89.000                               | <ul> <li>I.Level<br/>(m)</li> <li>87.712</li> <li>87.526</li> <li>87.546</li> <li>87.424</li> <li>87.327</li> <li>87.600</li> <li>87.455</li> </ul>                                                                                                                                                                                               | D.DeptJ<br>(m)<br>1.063<br>0.842<br>1.103<br>1.103<br>1.103<br>1.103<br>1.324                                                                | Coni<br>3 Open<br>9 Open<br>9 Open<br>1 Open<br>3 Open<br>5 Open<br>0 Open                                                             | Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole                       | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                                         |
| 51.000<br>51.001<br>52.000<br>51.002<br>51.003<br>53.000<br>53.001                               | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233<br>34.941<br>29.067                                                            | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0<br>200.0<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.4</li> <li>SS8.1</li> <li>SS8.2</li> </ul>                                                                                                                                                                      | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.750<br>88.750<br>88.750<br>88.800<br>89.000                               | <ul> <li>I.Level<br/>(m)</li> <li>87.712</li> <li>87.526</li> <li>87.546</li> <li>87.424</li> <li>87.327</li> <li>87.600</li> <li>87.455</li> </ul>                                                                                                                                                                                               | D.DeptJ<br>(m)<br>1.063<br>0.842<br>1.103<br>1.103<br>1.103<br>1.103<br>1.324                                                                | Coni<br>3 Open<br>9 Open<br>9 Open<br>1 Open<br>3 Open<br>5 Open<br>0 Open                                                             | Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole                                  | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                                         |
| S1.000<br>S1.001<br>S2.000<br>S1.002<br>S1.003<br>S3.000<br>S3.001<br>S3.002                     | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233<br>34.941<br>29.067<br>30.147                                                  | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0<br>200.0<br>200.0<br>225.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.4</li> <li>SS8.1</li> <li>SS8.2</li> <li>SS6.4</li> </ul>                                                                                                                                                                      | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.750<br>88.750<br>88.800<br>89.000<br>88.750                               | <ul> <li>I.Level (m)</li> <li>87.712</li> <li>87.526</li> <li>87.546</li> <li>87.424</li> <li>87.327</li> <li>87.600</li> <li>87.455</li> <li>87.321</li> </ul>                                                                                                                                                                                   | D.Deptl<br>(m)<br>1.066<br>0.84<br>1.100<br>1.199<br>0.979<br>1.320                                                                          | n Conn<br>3 Open<br>9 Open<br>9 Open<br>1 Open<br>3 Open<br>5 Open<br>0 Open<br>4 Open                                                 | Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole                       | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>120                                                                                  |
| S1.000<br>S1.001<br>S2.000<br>S1.002<br>S1.003<br>S3.000<br>S3.001<br>S3.002<br>S4.000           | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233<br>34.941<br>29.067<br>30.147<br>22.744                                        | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0<br>200.0<br>200.0<br>225.0<br>199.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.4</li> <li>SS8.1</li> <li>SS8.2</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> </ul>                                                                                                                         | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.750<br>88.750<br>88.800<br>89.000<br>88.750                               | <ul> <li>I.Level (m)</li> <li>87.712</li> <li>87.526</li> <li>87.546</li> <li>87.424</li> <li>87.424</li> <li>87.420</li> <li>87.600</li> <li>87.600</li> <li>87.455</li> <li>87.321</li> <li>87.761</li> </ul>                                                                                                                                   | D.Deptl<br>(m)<br>1.063<br>0.842<br>1.103<br>1.199<br>0.977<br>1.329<br>1.200<br>0.765                                                       | Coni<br>3 Open<br>9 Open<br>9 Open<br>1 Open<br>3 Open<br>5 Open<br>0 Open<br>4 Open<br>4 Open                                         | Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole                       | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                 |
| s1.000<br>s1.001<br>s2.000                                                                       | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233<br>34.941<br>29.067<br>30.147<br>22.744<br>18.125                              | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0<br>200.0<br>200.0<br>225.0<br>199.5<br>250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.4</li> <li>SS8.1</li> <li>SS8.2</li> <li>SS6.4</li> <li>SS8.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> </ul> | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.750<br>88.750<br>88.750<br>88.750<br>88.750<br>88.750                     | <ul> <li>I.Level<br/>(m)</li> <li>87.712</li> <li>87.526</li> <li>87.546</li> <li>87.424</li> <li>87.327</li> <li>87.600</li> <li>87.455</li> <li>87.321</li> <li>87.321</li> <li>87.761</li> <li>87.255</li> </ul>                                                                                                                               | D.Deptl<br>(m)<br>1.06<br>0.84<br>1.10<br>1.19<br>0.97<br>1.32<br>1.20<br>0.76<br>1.27                                                       | Com<br>Com<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open                             | Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole            | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                                         |
| 51.000<br>51.001<br>52.000<br>51.002<br>51.003<br>53.000<br>53.001<br>53.002<br>54.000<br>51.004 | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233<br>34.941<br>29.067<br>30.147<br>22.744<br>18.125<br>13.959                    | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>250.0<br>200.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>250.0<br>25 | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.4</li> <li>SS8.1</li> <li>SS8.2</li> <li>SS6.4</li> <li>SS8.4</li> <li>SS8.2</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.5</li> <li>SS6.6</li> </ul>                                              | C.Level<br>(m)<br>89.000<br>88.600<br>88.600<br>88.750<br>88.750<br>88.800<br>89.000<br>89.000<br>88.750<br>88.750<br>88.750 | I.Level<br>(m)           87.712           87.526           87.546           87.546           87.546           87.546           87.546           87.546           87.546           87.546           87.546           87.546           87.547           87.600           87.424           87.761           87.761           87.255           87.199 | D.Deptl<br>(m)<br>1.063<br>0.84<br>1.100<br>1.109<br>1.200<br>0.979<br>1.320<br>0.760<br>1.277<br>1.329                                      | Coni<br>Coni<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open<br>Open                                                           | Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200                                                         |
| 51.000<br>51.001<br>52.000<br>51.002<br>51.003<br>53.000<br>53.002<br>54.000<br>51.004<br>51.005 | (m)<br>15.871<br>25.105<br>19.747<br>25.568<br>24.233<br>34.941<br>29.067<br>30.147<br>22.744<br>18.125<br>13.959<br>7.633<br>15.533 | (1:X)<br>250.0<br>135.5<br>250.0<br>250.0<br>250.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>200.0<br>20 | <ul> <li>Name</li> <li>SS6.1</li> <li>SS6.2</li> <li>SS6.3</li> <li>SS6.4</li> <li>SS8.1</li> <li>SS8.2</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.4</li> <li>SS6.5</li> <li>SS6.6</li> <li>SS6.6</li> <li>SS6.4</li> </ul>                                              | C.Level<br>(m)<br>89.000<br>88.600<br>88.750<br>88.750<br>88.800<br>88.750<br>88.750<br>88.750<br>88.750<br>88.750           | <ul> <li>I.Level<br/>(m)</li> <li>87.512</li> <li>87.526</li> <li>87.546</li> <li>87.424</li> <li>87.327</li> <li>87.600</li> <li>87.455</li> <li>87.321</li> <li>87.321</li> <li>87.761</li> <li>87.255</li> <li>87.168</li> <li>86.706</li> </ul>                                                                                               | D.Deptl<br>(m)<br>1.063<br>0.844<br>0.824<br>1.103<br>1.197<br>0.979<br>1.322<br>1.200<br>0.766<br>1.277<br>1.324<br>1.324<br>1.325<br>1.815 | Con<br>Con<br>Open<br>Open<br>Open<br>Copen<br>Copen<br>Open<br>Open<br>Open<br>Copen<br>Copen<br>Open<br>Open<br>Open<br>Open<br>Open | Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole<br>Manhole | (mm)<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200<br>1200 |

12 Mill Street London SE1 2AY Micro Date 16/01/2020 16:38 Designed by Tmachale Drainage File Surface C2.mdx Checked by Network 2018.1 Area Summary for Storm Pipe PIMP PIMP PIMP Gross Imp. Pipe Total Number Type Name (%) Area (ha) Area (ha) (ha) 1.000 - - 100 0.070 1.001 - - 100 0.000 0.000 0.000 2.000 - - 100 1.002 - - 100 0.106 0.106 0.106 0.044 0.044 0.044 1.003 - - 100 0.058 0.058 0.159 0.159 0.000 0.000 0.000 0.000 0.000 0.000 4.000 - - 100 0.202 0.202 0.000 0.000 0.100 0.100 1.006 - - 100 0.065 1.007 - - 100 0.033 0.033 0.033 1.008 - - 100 0.000 0.000 0.000 Total Total Total 0.837 0.837 0.837

Barrett Mahony Consulting Eng

| Barrett Mahony Consulting Eng Page 6 12 Mill Street London SE1 2AY Date 16/01/2020 16:38 Designed by Tmachale Checked by XP Solutions Network 2018.1  Network Classifications for Storm  Nume Dia Depth Depth (mm) (m) (m) (m) (m) (m) (m) (m) (m) S1.000 S66.0 225 0.500 1.063 Unclassified 1200 0 0.500 Unclassified S1.001 S86.1 225 0.549 1.063 Unclassified 1200 0 0.0600 Unclassified S1.001 S86.2 225 0.649 1.061 Unclassified 1200 0 0.0600 Unclassified S1.001 S86.2 225 0.649 1.010 Unclassified 1200 0 0.0600 Unclassified S1.003 S86.3 225 1.101 1.198 Unclassified 1200 0 0.0600 Unclassified S3.001 S86.2 225 0.649 1.101 Unclassified 1200 0 0.0600 Unclassified S3.001 S86.2 225 0.649 1.101 Unclassified 1200 0 0.0900 Unclassified S3.001 S86.2 225 0.500 0.975 Unclassified 1200 0 0.975 Unclassified S3.001 S86.2 225 0.764 0.900 Unclassified 1200 0 0.101 Unclassified S3.001 S86.2 225 0.764 0.900 Unclassified 1200 0 0.101 Unclassified S3.001 S86.2 225 0.764 0.900 Unclassified 1200 0 0.975 Unclassified S3.001 S86.2 225 0.764 0.900 Unclassified 1200 0 0.900 Unclassified S3.001 S86.2 225 1.201 1.320 Unclassified 1200 0 0.900 Unclassified S3.001 S86.4 275 1.109 1.270 Unclassified 1200 0 1.270 Unclassified S3.001 S86.4 275 1.126 1.326 Unclassified 1200 0 1.270 Unclassified S3.001 S86.4 275 1.276 1.326 Unclassified 1200 0 1.320 Unclassified S3.001 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.001 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.001 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.001 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.001 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.001 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.000 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.000 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.000 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.000 S86.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified S3.000 S86.4 375 0.969 1.669                                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| London<br>SE1 2AY         Designed by Tmachale<br>Checked by         Designed by Tmachale<br>Checked by           XP Solutions         Network 2018.1           Determined for the second by<br>Network 2018.1           Network 2018.1           Determined for the second by<br>Name Dia Depth Depth (mm) (mm) (mm) (mm) (mm)           Not Wild Pipe Min Cover Max Cover Pipe Type Min Mit Mit Mit Mit Ring Mit Type<br>Dia Wildt Depth (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| SE1 2AY         Designed by Tmachale<br>Checked by         Designed by Tmachale<br>Checked by           YP Solutions         Network 2018.1           Deteigned by Tmachale<br>Checked by           Network 2018.1           Deteigned by Tmachale<br>Checked by           Network 2018.1           Deteigned by Tmachale<br>Checked by           Network 2018.1           Stonom 200 molassified 1200         0           Network 2018.1           Network 2018.1           Network 2018.1           Network 2018.1           Network 2018.1           Network 200 <th cols<="" td=""></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Date 16/01/2020 16:38       Designed by Tmachale<br>Checked by         File Surface C2.mdx       Network 2018.1         Designed by Tmachale<br>Checked by         Network 2018.1         Network 2018.1         Network Classifications for Storm         FN USME Pipe Min Cover Max Cover Pipe Type Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| File Surface C2.mdx       Checked by         XP Solutions       Network 2018.1         Detwork Classifications for Storm         Metwork Classifications for Storm         Physical Depth Min Cover Max Cover Pipe Type Mi MH MH MH Ring MH Type Dia Wicht Depth (mm) (m) (m) (m) (m) (m)         Signal Depth Depth (mm) (mm) (mm) (mm) (m)         Signal Depth (mm) (m) (m) (m)         Signal Depth (mm) (m) (m)         Signal Depth (mm) (m) (m)         Signal Depth (mm) (mm) (mm) (mm)         Signal Depth (mm) (m) (mm)         Signal Depth (mm) (mm) (mm)         Signal Depth (mm) (mm) (mm)         Signal Depth (mm) (mm)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| XP Solutions         Network 2018.1           Network Classifications for Storm           FN USMH Pipe Min Gover Max Cover Pipe Type MH MH MH MH Ring MH Type Dia Width Depth (mm) (m) (m) (m) (m) (m) (m) (m) (m) (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Network Classifications for Storm           PN         USHH         Pipe Min Cover Max Cover Pipe Type Dia Width Depth<br>(mm) (mm) (m)         MH MH MH Ring MH Type Dia Width Depth<br>(mm) (mm) (m)           \$1.000 S56.0 225 0.500 1.063 Unclassified 1200 0 0.500 Unclassified<br>\$2.000 S7.0 225 0.849 1.063 Unclassified 1200 0 0.960 Unclassified<br>\$2.000 S86.2 225 0.849 1.010 Unclassified 1200 0 0.960 Unclassified<br>\$3.001 S86.3 225 1.101 1.198 Unclassified 1200 0 0.960 Unclassified<br>\$3.001 S88.1 225 0.975 1.320 Unclassified 1200 0 0.970 Unclassified<br>\$3.001 S88.1 225 0.975 1.320 Unclassified 1200 0 0.970 Unclassified<br>\$3.002 S88.2 225 1.204 1.320 Unclassified 1200 0 0.970 Unclassified<br>\$3.003 S85.1 225 0.764 0.900 Unclassified 1200 0 1.320 Unclassified<br>\$3.003 S85.6 225 1.204 1.320 Unclassified 1200 0 1.320 Unclassified<br>\$3.005 S95.0 225 0.764 0.900 Unclassified 1200 0 1.320 Unclassified<br>\$3.005 S85.5 225 1.270 1.326 Unclassified 1200 0 1.320 Unclassified<br>\$3.007 S85.7 225 1.777 Unclassified 1200 0 1.320 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S85.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br>\$3.008 S80 S00 S00 S00 S00 S00 S00 S                                                                                                                                  |  |
| PN         USHH         Pipe         Max         Cover         Max         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Name         Dia<br>(m)         Depth<br>(m)         Depth<br>(m)         Dia<br>(m)         Width<br>(m)         Depth<br>(m)           S1.000         SS6.1         225         0.500         1.063         Unclassified         1200         0         0.500         Unclassified           S1.000         SS6.1         225         0.849         1.063         Unclassified         1200         0         0.900         Unclassified           S2.002         SS6.2         225         0.849         1.011         Unclassified         1200         0         0.900         Unclassified           S3.002         SS8.2         225         0.501         0.975         Unclassified         1200         0         0.975         Unclassified           S3.002         SS8.2         225         1.204         1.320         Unclassified         1200         0         0.975         Unclassified           S4.002         SS6.5         225         1.274         Unclassified         1200         0         1.320         Unclassified           S1.005         SS6.5         225         1.326         Unclassified         1200         0         1.270         Unclassified           S1.006         S56.5         225         1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| (mm)         (m)         (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| <pre>S1.000 SS6.0 225 0.500 1.063 Unclassified 1200 0 1.063 Unclassified<br/>S1.001 SS6.1 225 0.849 1.063 Unclassified 1200 0 0.900 Unclassified<br/>S2.000 SS7.0 225 0.829 0.900 Unclassified 1200 0 0.900 Unclassified<br/>S1.003 SS6.3 225 0.849 1.101 Unclassified 1200 0 0.849 Unclassified<br/>S1.003 SS6.3 225 1.101 1.199 Unclassified 1200 0 0.101 Unclassified<br/>S3.000 SS8.0 225 0.500 0.975 Unclassified 1200 0 0.500 Unclassified<br/>S3.001 SS8.1 225 0.975 1.320 Unclassified 1200 0 0.975 Unclassified<br/>S3.002 SS8.2 225 1.204 1.320 Unclassified 1200 0 1.320 Unclassified<br/>S4.000 SS9.0 225 0.764 0.900 Unclassified 1200 0 1.320 Unclassified<br/>S1.004 SS6.4 225 1.198 1.271 Unclassified 1200 0 1.270 Unclassified<br/>S1.005 SS6.5 225 1.270 1.326 Unclassified 1200 0 1.270 Unclassified<br/>S1.006 SS6.6 225 1.326 1.357 Unclassified 1200 0 1.270 Unclassified<br/>S1.006 SS6.7 225 1.757 1.819 Unclassified 1200 0 1.326 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Unclassified<br/>S1.008 SS 5.4 375 0.969 1.669 Unclassified 1350 0 1.669 Uncla</pre> |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe Number       Name       (m)       (m)       I. Level (mmn) (mmn)<br>(m)         S1.008       S       88.000       86.656       86.700       0       0         Simulation       Criteria       for       Storm         Volumetric       Runoff Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal       Reduction       Factor       1.000       MADD Factor       10m²/ha       Storage       2.000         Hot       Start       (mm)       0       Flow       Person per Day       0.800         Manhole       Headloss       Coeff (Global)       0.500       Run Time (mins)       60         Foul       Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of       Input Hydrographs       0       Number of Storage       Structures 1         Number of       Online       Controls       1       Number of       Time/Area       Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Outfall       Outfall C. Level I. Level       Min       D,L       W         Pipe       Number       Name       (m)       I. Level       (mm)       (mm)         S1.008       S       88.000       86.656       86.700       0       0         S1.008       S       88.000       86.656       86.700       0       0         Volumetric Runoff       Coeff       0.750       Additional Flow       % of Total Flow       0.000         Areal Reduction Factor 1.000       MADD Factor * 10m*/ha Storage 2.000       Number Start (mins)       0       Inlet Coefficient 0.800         Hot Start (mins)       0       Inlet Coefficient 0.800       Run Time (mins)       60         Foul Sewage per hectare (1/s)       0.000       Output Interval (mins)       1         Number of Input Hydrographs       0 Number of Storage Structures 1       Number of Online Controls 1       Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Pipe Number Name       (m)       (m)       I. Level (mm)       (mm)         S1.008       S       88.000       86.656       86.700       0       0         S1.008       S       88.000       86.656       86.700       0       0         S1.008       S       88.000       86.656       86.700       0       0         Simulation Criteria for Storm       Simulation Criteria for Storm       0       0       0         Volumetric Runoff Coeff       0.750       Additional Flow - % of Total Flow 0.000       0.000         Areal Reduction Factor 1.000       MADD Factor * 10m³/ha Storage 2.000       0.000         Hot Start (mins)       0       Inlet Coefficcient 0.800         Hot Start (mins)       0       Inlet Coefficcient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 1       Number of Online Controls 1       Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| (m)<br>S1.008 S 88.000 86.656 86.700 0 0<br><u>Simulation Criteria for Storm</u><br>Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000<br>Areal Reduction Factor 1.000 MADD Factor * 10m <sup>3</sup> /ha Storage 2.000<br>Hot Start (mins) 0 Inlet Coefficient 0.800<br>Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000<br>Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60<br>Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1<br>Number of Input Hydrographs 0 Number of Storage Structures 1<br>Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| S1.008 S 88.000 86.656 86.700 0 0<br>Simulation Criteria for Storm<br>Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000<br>Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000<br>Hot Start (mins) 0 Inlet Coefficient 0.800<br>Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000<br>Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60<br>Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1<br>Number of Input Hydrographs 0 Number of Storage Structures 1<br>Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Simulation Criteria for Storm         Volumetric Runoff Coeff 0.750       Additional Flow - % of Total Flow 0.000         Areal Reduction Factor 1.000       MADD Factor * 10m*/ha Storage 2.000         Hot Start (mins)       0         Inlet Coefficient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 1       Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000<br>Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000<br>Hot Start (mins) 0 Inlet Coefficient 0.800<br>Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000<br>Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60<br>Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1<br>Number of Input Hydrographs 0 Number of Storage Structures 1<br>Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Areal Reduction Factor 1.000       MADD Factor * 10m³/ha Storage 2.000         Hot Start (mins)       0       Inlet Coefficient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 1       Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Areal Reduction Factor 1.000       MADD Factor * 10m³/ha Storage 2.000         Hot Start (mins)       0       Inlet Coefficient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 1       Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Hot Start (mins)       0       Inlet Coefficient 0.800         Hot Start Level (mm)       0 Flow per Person per Day (1/per/day) 0.000         Manhole Headloss Coeff (Global) 0.500       Run Time (mins)       60         Foul Sewage per hectare (1/s) 0.000       Output Interval (mins)       1         Number of Input Hydrographs 0 Number of Storage Structures 1       Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000<br>Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60<br>Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1<br>Number of Input Hydrographs 0 Number of Storage Structures 1<br>Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1<br>Number of Input Hydrographs 0 Number of Storage Structures 1<br>Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Number of Input Hydrographs 0 Number of Storage Structures 1<br>Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Number of Online Controls 1 Number of Time/Area Diagrams 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Number of Offline Controls 0 Number of Real Time Controls 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Synthetic Rainfall Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Rainfall Model FSR Profile Type Summer<br>Return Period (years) 100 Cv (Summer) 0.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Region England and Wales Cv (Winter) 0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| M5-60 (mm) 14.000 Storm Duration (mins) 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Ratio R 0.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| ©1982-2018 Innovyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

| 12 Mill St:<br>London<br>SE1 2AY<br>Date 16/01,<br>File Surfac<br>XP Solution                             | /2020 16:3<br>ce C2.mdx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |                                                                                          |                                                                                           |                                                                                    |                                                                                    |                                         |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|
| SE1 2AY<br>Date 16/01,<br>File Surfac                                                                     | ce C2.mdx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                                                                          |                                                                                           |                                                                                    |                                                                                    | -                                       |
| Date 16/01,<br>File Surfa                                                                                 | ce C2.mdx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                                                                          |                                                                                           |                                                                                    |                                                                                    | and the second                          |
| File Surfa                                                                                                | ce C2.mdx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                          | Destaura                                                                                 | 1 1. m 1                                                                                  | 1 .                                                                                |                                                                                    | Micro                                   |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                          | -                                                                                        | l by Tmach                                                                                | nale                                                                               |                                                                                    | Drain                                   |
| XP Solution                                                                                               | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            | Checked                                                                                  |                                                                                           |                                                                                    |                                                                                    |                                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | Network                                                                                  | 2018.1                                                                                    |                                                                                    |                                                                                    |                                         |
| Hvdro-H                                                                                                   | Brake® Opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            | ne Controls                                                                              |                                                                                           |                                                                                    | lume (m                                                                            | <sup>3</sup> ): 2.5                     |
| ROBRAKE                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / U1                                                                                       | nit Reference                                                                            | MD-SHE-00                                                                                 | 75-2500-10                                                                         | 0 <b>-</b> 2500                                                                    |                                         |
| FED TO 2.5                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | De                                                                                         | sign Head (m)                                                                            |                                                                                           |                                                                                    | 1.000                                                                              |                                         |
| 120102.3                                                                                                  | L/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Desid                                                                                      | gn Flow (l/s)<br>Flush-Flo™                                                              |                                                                                           | Cal                                                                                | 2.5<br>culated                                                                     |                                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            |                                                                                          | Minimise                                                                                  |                                                                                    |                                                                                    |                                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | Application                                                                              |                                                                                           |                                                                                    | Surface                                                                            |                                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | ump Available                                                                            |                                                                                           |                                                                                    | Yes                                                                                |                                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | Diameter (mm)<br>ert Level (m)                                                           |                                                                                           |                                                                                    | 75<br>86.768                                                                       |                                         |
|                                                                                                           | Minimum (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            | Diameter (mm)                                                                            |                                                                                           |                                                                                    | 100                                                                                |                                         |
|                                                                                                           | Suggest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ted Manhole I                                                                              | Diameter (mm)                                                                            |                                                                                           |                                                                                    | 1200                                                                               |                                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control                                                                                    | Points                                                                                   | Head (m) H                                                                                | flow (l/s)                                                                         |                                                                                    |                                         |
|                                                                                                           | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | esign Point                                                                                | (Calculated)                                                                             | 1.000                                                                                     | 2.5                                                                                |                                                                                    |                                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | Flush-Flo <sup>TH</sup><br>Kick-Flo®                                                     |                                                                                           | 2.5                                                                                |                                                                                    |                                         |
|                                                                                                           | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ean Flow ove                                                                               | r Head Range                                                                             |                                                                                           | 2.0                                                                                |                                                                                    |                                         |
| Hydro-Brak                                                                                                | e® Optimum a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as specified                                                                               | e been based<br>. Should ano                                                             | ther type                                                                                 | of control                                                                         | device of                                                                          | her tha                                 |
| Hydro-Brak                                                                                                | e® Optimum :<br>e Optimum®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | as specified                                                                               |                                                                                          | ther type                                                                                 | of control                                                                         | device of                                                                          | ther that                               |
| Hydro-Brak<br>Hydro-Brak<br>invalidate                                                                    | e® Optimum<br>e Optimum® 1<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as specified<br>be utilised                                                                | . Should ano                                                                             | ther type<br>orage rout                                                                   | of control<br>ing calcula                                                          | device ot<br>ations wil                                                            | ther that<br>the                        |
| Hydro-Brak<br>Hydro-Brak<br>invalidate<br>Depth (m)<br>0.100                                              | e® Optimum a<br>e Optimum® d<br>d<br>Flow (l/s)<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth (m) F                                                                                | . Should ano<br>then these st<br>Clow (1/s) Dep<br>2.7                                   | orage rout<br>orage rout<br>orth (m) Flo<br>3.000                                         | of control<br>ing calcula<br>ow (l/s) De<br>4.1                                    | device ot<br>ations wil<br>epth (m) 1<br>7.000                                     | ther tha<br>11 be<br>Flow (1,           |
| Hydro-Brak<br>Hydro-Brak<br>invalidate<br>Depth (m)<br>0.100<br>0.200                                     | e® Optimum A<br>e Optimum® 1<br>d<br>Flow (1/s)<br>2.1<br>2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth (m) F                                                                                | . Should ano<br>then these st<br>Clow (1/s) Dep<br>2.7<br>2.9                            | orage rout<br>orage rout<br>orth (m) Flo<br>3.000<br>3.500                                | of control<br>ing calcula<br>ow (1/s) De<br>4.1<br>4.5                             | device ot<br>ations wil<br>epth (m) 1<br>7.000<br>7.500                            | ther tha<br>.1 be<br>Flow (1,           |
| Hydro-Brak<br>Hydro-Brak<br>invalidate<br>Depth (m)<br>0.100<br>0.200<br>0.300                            | <pre>e® Optimum . e Optimum 1 d  Flow (1/s) 2.1 2.4 2.5</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth (m) F<br>1.200<br>1.400<br>1.600                                                     | . Should ano<br>then these st<br>'low (1/s) Der<br>2.7<br>2.9<br>3.1                     | ther type<br>orage rout<br>(m) Flo<br>3.000<br>3.500<br>4.000                             | of control<br>ing calcula<br>ow (1/s) De<br>4.1<br>4.5<br>4.7                      | device ot<br>ations wil<br>epth (m) 1<br>7.000<br>7.500<br>8.000                   | ther tha<br>.1 be<br>Flow (1,<br>(<br>( |
| Hydro-Brak<br>Hydro-Brak<br>invalidate<br>Depth (m)<br>0.100<br>0.200                                     | <pre>e® Optimum { e Optimum { f e f e f e f e f e f e f e f e f e f</pre> | as specified<br>be utilised<br>1.200<br>1.400<br>1.600<br>1.800                            | . Should ano<br>then these st<br>low (1/s) Deg<br>2.7<br>2.9<br>3.1<br>3.3               | orage rout<br>orage rout<br>orth (m) Flo<br>3.000<br>3.500                                | of control<br>ing calcula<br>ow (1/s) De<br>4.1<br>4.5                             | device ot<br>ations wil<br>epth (m) 1<br>7.000<br>7.500                            | ther that<br>1 be<br>Flow (1,           |
| Hydro-Brak<br>Hydro-Brak<br>invalidate<br>Depth (m)<br>0.100<br>0.200<br>0.300<br>0.400<br>0.500<br>0.600 | e® Optimum 1<br>e Optimum 1<br>d<br>Flow (1/s)<br>2.1<br>2.4<br>2.5<br>2.5<br>2.5<br>2.4<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>as specified be utilised Depth (m) F 1.200 1.400 1.600 1.800 2.000 2.200</pre>        | . Should ano<br>then these st<br>low (1/s) Deg<br>2.7<br>2.9<br>3.1<br>3.3<br>3.4<br>3.6 | ther type orage rout<br>oth (m) Flo<br>3.000<br>3.500<br>4.000<br>4.500<br>5.000<br>5.500 | of control<br>ing calcula<br>ow (1/s) De<br>4.1<br>4.5<br>4.7<br>5.0<br>5.3<br>5.5 | device ot<br>ations wil<br>epth (m) 1<br>7.000<br>7.500<br>8.000<br>8.500          | ther that<br>I be<br>Flow (1,           |
| Hydro-Brak<br>Hydro-Brak<br>invalidate<br>Depth (m)<br>0.100<br>0.200<br>0.300<br>0.400<br>0.500          | e® Optimum a<br>e Optimum 1<br>d<br>Flow (1/s)<br>2.1<br>2.4<br>2.5<br>2.5<br>2.5<br>2.4<br>2.1<br>2.4<br>2.1<br>2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | as specified<br>be utilised<br>1.200<br>1.400<br>1.600<br>1.600<br>2.000<br>2.200<br>2.400 | . Should ano<br>then these st<br>low (1/s) Deg<br>2.7<br>2.9<br>3.1<br>3.3<br>3.4<br>3.6 | ther type orage rout<br>orage rout<br>3.000<br>3.500<br>4.000<br>4.500<br>5.000           | of control<br>ing calcula<br>ow (1/s) De<br>4.1<br>4.5<br>4.7<br>5.0<br>5.0<br>5.3 | device ot<br>ations wil<br>epth (m) 1<br>7.000<br>7.500<br>8.000<br>8.500<br>9.000 | ther that<br>1 be<br>Flow (1,           |

|                           |               | ony Cons     | ultin        | g Eng         | 1                                |               |               |                                              |               | Pag           | te 8         |
|---------------------------|---------------|--------------|--------------|---------------|----------------------------------|---------------|---------------|----------------------------------------------|---------------|---------------|--------------|
| 12 Mi                     | ll Str        | eet          |              |               |                                  |               |               |                                              |               | 1 Sec.        |              |
| Londo                     |               |              |              |               |                                  |               |               |                                              |               | 1             | -            |
| SE1 22                    |               |              |              |               |                                  |               |               |                                              |               | M             | rin          |
| Date 3                    | 16/01/        | 2020 16:     | 38           |               | Desig                            | ned b         | / Tmac        | hale                                         |               | in the        | ainage       |
| File :                    | Surfac        | e C2.mdx     |              |               | Check                            | ed by         |               |                                              |               | EII.          | amaye        |
| XP So                     | lution        | s            |              |               | Netwo                            | rk 201        | 18.1          |                                              |               |               |              |
|                           |               |              |              |               |                                  |               |               |                                              |               |               |              |
|                           |               |              |              | Storage       | e Struct                         | ures          | <u>tor St</u> | orm                                          |               |               |              |
|                           |               | Ta           | nk or        | Pond 1        | Manhole:                         | SS6.          | 7, DS/        | PN: S1.C                                     | 07            |               |              |
|                           |               |              |              | In            | vert Leve                        | L (m) 8       | 86.768        |                                              |               |               |              |
|                           |               | Depth (      | m) Are       | a (m²)   I    | Depth (m)                        | Area          | (m²) Dej      | pth (m) A:                                   | rea (m²       | )             |              |
| LL TA<br>00m <sup>2</sup> | NK            | 0.0          | 00           | 400.0         | 0.400                            | 4(            | 0.0           | 0.401                                        | 0.            | 0             |              |
|                           | <u>Time</u>   | Area Di      | agram        | for G         | reen Roc                         | <u>f at</u>   | Pipe N        | umber Sl                                     | .000          | (Storm        | <u>)</u>     |
|                           |               | Depre        | ession       |               | (m³) 390<br>(mm) 10              |               |               | (mm/day)<br>fficient                         | 3<br>0.050    |               |              |
| Time<br>From:             | (mins)<br>To: | Area<br>(ha) |              | (mins)<br>To: | Area<br>(ha)                     |               | (mins)<br>To: | Area<br>(ha)                                 | Time<br>From: | (mins)<br>To: | Area<br>(ha) |
| 0                         | 4             | 0.007087     | 32           | 36            | 0.001431                         | 64            | 68            | 0.000289                                     | 96            | 100           | 0.000058     |
| 4                         |               | 0.005802     |              | 4.0           | 0 001171                         | 68            | 72            | 0.000237                                     |               |               | 0.000048     |
| 8                         |               | 0.004751     |              | 44            | 0.000959                         | 72            | 76            | 0.000194                                     |               |               | 0.000039     |
| 12                        |               | 0.003889     |              | 48            | 0.000959<br>0.000785<br>0.000643 | 76            | 80            | 0.000159                                     |               |               | 0.000032     |
| 16                        |               | 0.003184     |              | 52            | 0.000643                         | 80            | 84            | 0.000130                                     |               |               | 0.000026     |
| 20                        |               | 0.002607     |              |               | 0.000526                         |               |               | 0.000106                                     | 116           | 120           | 0.000021     |
| 24                        |               | 0.002133     |              |               | 0.000353                         |               |               | 0.0000071                                    |               |               |              |
|                           | Time          | Area Di      | I            |               |                                  | I             |               | umber S2                                     | 000           | (Storm        | )            |
|                           | 11110         | IILOG DI     | <u>agran</u> |               | (m³) 106                         |               |               |                                              | 3             | 100011        | <u>_</u>     |
|                           |               | Depre        | ssion        |               |                                  |               |               | efficient                                    |               |               |              |
| Time<br>From:             | (mins)<br>To: | Area<br>(ha) |              | (mins)<br>To: | Area<br>(ha)                     | Time<br>From: | (mins)<br>To: | Area<br>(ha)                                 | Time<br>From: | (mins)<br>To: | Area<br>(ha) |
| 0                         | 4             | 0.019262     | 32           | 36            | 0.003889                         | 64            | 68            | 0.000785                                     | 96            | 100           | 0.000159     |
| 4                         | 8             | 0.015771     | 36           | 4.0           | 0 003184                         | 68            | 72            | 0 000643                                     | 100           | 104           | 0.000130     |
| 8                         |               | 0.012912     | 40           | 44            | 0.002607                         | 72            | 76            | 0.000526                                     | 104           | 108           | 0.000106     |
| 12                        |               | 0.010571     | 44           | 48            | 0.002134                         | 76            | 80            | 0.000352                                     | 108           | 112           | 0.000087     |
| 20                        |               | 0.008655     | 48<br>52     | 52<br>56      | 0.001431                         | 84            | 84<br>88      | 0.000526<br>0.000431<br>0.000353<br>0.000289 | 116           | 120           | 0.0000058    |
| 2.0                       |               | 0.005802     | 56           | 60            | 0.001171                         | 88            | 92            | 0.000236                                     |               | 120           |              |
|                           | 32            | 0.004750     | 60           | 64            | 0.000959                         | 92            | 96            | 0.000194                                     |               |               |              |
| 28                        |               |              |              | for G:        | reen Roc                         | fat           | Pipe N        | umber S3                                     | .000          | <u>(Storm</u> | <u>)</u>     |
| 28                        | <u>Time</u>   | Area Di      | agram        |               |                                  |               |               |                                              |               |               |              |
| 28                        | <u>Time</u>   |              |              |               | (m <sup>3</sup> ) 542            |               |               |                                              | 3             |               |              |
| 28                        | <u>Time</u>   |              |              |               |                                  |               |               | (mm/day)<br>fficient                         |               |               |              |
| 28                        | <u>Time</u>   |              |              |               |                                  |               |               |                                              |               |               |              |

| barre         | tt Mah        | ony Cons                   | ultin         | g Eng                  |                             |               |               |              |               | Pag           | je 9         |
|---------------|---------------|----------------------------|---------------|------------------------|-----------------------------|---------------|---------------|--------------|---------------|---------------|--------------|
| 12 Mi         | ll Str        | eet                        |               |                        |                             |               |               |              |               |               |              |
| Londoi        | n             |                            |               |                        |                             |               |               |              |               |               |              |
| SE1 2/        |               |                            |               |                        |                             |               |               |              |               | 100           | the second   |
|               |               |                            |               |                        |                             |               |               |              |               | Mi            | 011          |
| Date :        | 16/01/        | 2020 16:                   | 38            |                        | Desig                       | ned by        | y Tmach       | nale         |               | 10.0          | ainadi       |
| File :        | Surfac        | e C2.mdx                   |               |                        | Check                       | ed by         |               |              |               | DI            | an iayi      |
| XP So         | lution        | s                          |               |                        | Netwo                       | rk 201        | 18.1          |              |               |               |              |
|               | LUCION        |                            |               |                        |                             | 276 200.      |               |              |               |               |              |
|               | <u>Time</u>   | Area Di                    | agram         | for Gi                 | reen Roc                    | fat           | Pipe N        | umber S3     | .000          | (Storm        | )            |
| Time          | (mins)        | Area                       | Time          | (mins)                 | Area                        |               | (mins)        | Area         |               | (mins)        | Area         |
| From:         | To:           | (ha)                       | From:         | To:                    | (ha)                        | From:         | To:           | (ha)         | From:         | To:           | (ha)         |
| 0             | 4             | 0.009849                   | 32            | 36                     | 0.001989                    | 64            | 68            | 0.000401     | 96            | 100           | 0.00008      |
| 4             | 8             | 0.008064                   | 36            | 40                     | 0.001628                    | 68            | 72            | 0.000329     | 100           | 104           | 0.00006      |
| 8             | 12            | 0.006602                   | 40            | 44                     | 0.001333                    | 72            | 76            | 0.000269     | 104           | 108           | 0.00005      |
| 12            |               | 0.005405                   | 44            |                        | 0.001091                    | 76            |               | 0.000220     | 108           |               | 0.00004      |
| 16            |               | 0.004426                   | 48            |                        | 0.000893                    | 80            |               | 0.000180     |               |               | 0.00003      |
| 20            |               | 0.003623                   | 52            |                        | 0.000732                    | 84            |               | 0.000148     |               |               | 0.00003      |
| 24            |               | 0.002967                   | 56            |                        | 0.000599                    |               |               | 0.000140     |               | 120           | 5.00000      |
| 24            |               | 0.002967                   |               |                        | 0.000399                    |               |               | 0.0000121    |               |               |              |
|               |               |                            | 1             |                        |                             | 1             |               |              | I             |               |              |
|               | <u>Time</u>   | Area Di                    | agram         | for Gi                 | reen Roc                    | of at         | Pipe N        | umber S4     | .000          | (Storm        | <u>)</u>     |
|               |               |                            |               | Area                   | (m <sup>3</sup> ) 201       | 7 Evapo       | pration       | (mm/day)     | 3             |               |              |
|               |               | Depre                      | ssion :       | Storage                | (mm) 1                      | 0 De          | ecay Coe      | fficient     | 0.050         |               |              |
| Time<br>From: | (mins)<br>To: | Area                       | Time<br>From: | (mins)<br>To:          | Area                        | Time<br>From: | (mins)<br>To: | Area         | Time<br>From: | (mins)<br>To: | Area         |
| From:         | 10:           | (ha)                       | From:         | 10:                    | (ha)                        | From:         | 10:           | (ha)         | From:         | 10:           | (ha)         |
| 0             |               | 0.036653                   | 32            |                        | 0.007400                    | 64            |               | 0.001494     | 96            |               | 0.00030      |
| 4             | 8             | 0.030009                   | 36            | 40                     | 0.006059                    | 68            | 72            | 0.001223     | 100           | 104           | 0.00024      |
| 8             | 12            | 0.024569                   | 40            | 44                     | 0.004960                    | 72            | 76            | 0.001001     | 104           | 108           | 0.00020      |
| 12            | 16            | 0.020116                   | 44            | 48                     | 0.004061                    | 76            | 80            | 0.000820     | 108           | 112           | 0.00016      |
| 16            | 20            | 0.016469                   | 48            | 52                     | 0.003325                    | 80            | 84            | 0.000671     | 112           | 116           | 0.00013      |
| 20            | 24            | 0.013484                   | 52            | 56                     | 0.002722                    | 84            | 88            | 0.000550     | 116           | 120           | 0.00011      |
| 24            |               | 0.011040                   | 56            |                        | 0.002229                    | 88            |               | 0.000450     |               |               |              |
| 28            |               | 0.009038                   |               |                        | 0.001825                    |               |               | 0.000368     |               |               |              |
|               | Time          | Area Di                    | agram         | for Gi                 | reen Roc                    | of at         | Pipe N        | umber S1     | .005          | (Storm        | )            |
|               |               |                            |               | Drop.                  | (m³) 100                    | 0 Errono      | ration        | (mm (day)    | 3             |               | _            |
|               |               | Depre                      | ssion :       | Storage                |                             |               |               | fficient     |               |               |              |
| Time<br>From: | (mins)<br>To: | Area<br>(ha)               | Time<br>From: | (mins)<br>To:          | Area<br>(ha)                | Time<br>From: | (mins)<br>To: | Area<br>(ha) | Time<br>From: | (mins)<br>To: | Area<br>(ha) |
|               |               |                            |               |                        | . ,                         |               |               | . ,          |               |               |              |
| 0             |               | 0.018172                   | 32            |                        | 0.003669                    | 64            |               | 0.000741     | 96            |               | 0.00015      |
| 4             |               | 0.014878                   | 36            |                        | 0.003004                    | 68            |               | 0.000606     | 100           |               | 0.00012      |
| 8             |               | 0.012181                   | 40            |                        | 0.002459                    | 72            |               | 0.000497     | 104           |               | 0.00010      |
| 12            |               | 0.009973                   | 44            |                        | 0.002014                    | 76            |               | 0.000407     | 108           |               | 0.00008      |
|               | 20            | 0.008165                   | 48            | 52                     | 0.001649                    | 80            | 84            | 0.000333     | 112           | 116           | 0.00006      |
| 16            | 24            | 0.006685                   | 52            | 56                     | 0.001350                    | 84            | 88            | 0.000272     | 116           | 120           | 0.00005      |
| 16<br>20      |               | 0.005473                   | 56            | 60                     | 0.001105                    | 88            | 92            | 0.000223     |               |               |              |
|               | 28            | 0.0034/3                   |               |                        | 0.000905                    | 92            |               | 0.000183     |               |               |              |
| 20            |               | 0.003473                   | 60            | 64                     |                             |               |               |              |               |               |              |
| 20<br>24      | 32            | 0.004481                   | I             |                        |                             | fat           | Pipe N        | umber Sl     | .006          | (Storm        | )            |
| 20<br>24      | 32            | 0.004481                   | I             | for Gi                 | reen Roc                    |               |               |              |               | <u>(Storm</u> | <u>)</u>     |
| 20<br>24      | 32            | 0.004481<br><u>Area Di</u> | agram         | for Gi                 | <u>reen Roc</u><br>(m³) 570 | - Evapo       | ration        |              | 3             | <u>(Storm</u> | <u>)</u>     |
| 20<br>24      | 32            | 0.004481<br><u>Area Di</u> | agram         | <u>for G</u> i<br>Area | <u>reen Roc</u><br>(m³) 570 | - Evapo       | ration        | (mm/day)     | 3             | <u>(Storm</u> | <u>)</u>     |

| Barret        | t Mah         | ony Cons     | ultin         | g Eng         |              |               |               |              |               | Pag           | re 10        |
|---------------|---------------|--------------|---------------|---------------|--------------|---------------|---------------|--------------|---------------|---------------|--------------|
| 12 Mil        | ll Str        | eet          |               |               |              |               |               |              |               |               |              |
| Londor        | 1             |              |               |               |              |               |               |              |               |               |              |
| SE1 27        |               |              |               |               |              |               |               |              |               |               | the start    |
|               |               | 2020 16:     | 38            |               | Desig        | ned by        | y Tmacl       | hale         |               | MI            | uu           |
|               |               | e C2.mdx     |               |               | Check        |               | ,             |              |               | En C          | ainage       |
| XP Sol        |               |              |               |               |              | rk 201        | 18 1          |              |               |               |              |
| AF 501        | LUCION:       | 5            |               |               | Netwo        | IK ZU.        | 10.1          |              |               |               |              |
|               | Time          | Area Di      | agram         | for Gi        | een Roo      | fat           | Pipe N        | umber Sl     | .006          | (Storm        | <u>)</u>     |
| Time          | (mins)        | Area         |
| From:         | To:           | (ha)         |
| 0             | 4             | 0.010358     | 32            | 36            | 0.002091     | 64            | 68            | 0.000422     | 96            | 100           | 0.000085     |
| 4             |               | 0.008480     |               |               | 0.001712     | 68            |               | 0.000346     |               |               | 0.000070     |
| 8             |               | 0.006943     | 40            |               | 0.001402     |               |               | 0.000283     |               |               | 0.000057     |
| 12            |               | 0.005685     | 44            |               | 0.001148     |               |               | 0.000232     | 108           |               | 0.000047     |
| 16            |               | 0.004654     | 48            |               | 0.000940     |               |               | 0.000190     |               |               | 0.000038     |
| 20            |               | 0.003811     | 52            |               | 0.000769     |               |               | 0.000155     |               |               | 0.000031     |
| 2.0           |               | 0.003120     |               |               | 0.000630     |               |               | 0.000133     | 1 110         | 120           | 5.0000J1     |
| 24            |               | 0.002554     |               |               | 0.000516     |               |               | 0.00012/     |               |               |              |
|               |               |              | I             |               |              | I             |               |              | 1             |               |              |
|               | <u>Time</u>   | Area Di      | agram         | for Gi        | reen Roo     | fat           | Pipe N        | umber Sl     | .007          | (Storm        | <u>)</u>     |
|               |               |              |               |               | (m³) 330     |               |               |              | 3             |               |              |
|               |               | Depre        | ession        | Storage       | (mm) 10      | De            | cay Coe       | fficient     | 0.050         |               |              |
| Time<br>From: | (mins)<br>To: | Area<br>(ha) |
| 0             | 4             | 0.005997     | 32            | 26            | 0.001211     | 64            | 6.0           | 0.000244     | 96            | 1.0.0         | 0.000049     |
| 4             |               | 0.003997     | 36            |               | 0.0001211    | 68            |               | 0.000244     |               |               | 0.000049     |
|               |               | 0.004910     | 40            |               | 0.000991     |               |               |              | 100           |               | 0.000033     |
| 12            |               | 0.004020     | 40            |               | 0.000612     | 72            |               | 0.000164     |               |               | 0.000033     |
| 16            |               | 0.003291     | 49            |               | 0.000544     |               |               | 0.000134     |               |               |              |
| 20            |               | 0.002895     |               |               | 0.000344     |               |               | 0.0000110    | 116           | 120           | 0.000022     |
| 20            |               | 0.001806     |               |               | 0.000365     |               |               | 0.000074     | 110           | 120           | 0.000018     |
| 24            |               | 0.001808     |               |               | 0.000365     |               |               | 0.000060     |               |               |              |
| 20            | 52            | 0.0014/5     | 00            | 04            | 0.000233     | 1 22          | 50            | 0.000000     | I             |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               |               |              |               |               |              |               |               |              |
|               |               |              |               | ∩1            | 982-2018     | R Three       | 111170        |              |               |               |              |
|               |               |              |               | OT.           | 202-2010     | > TUUC        | .vyze         |              |               |               |              |

| 12 Mil           |                | ony Consult                                            | LING EI.            | ig                |                               |                                   | Page 11                            |
|------------------|----------------|--------------------------------------------------------|---------------------|-------------------|-------------------------------|-----------------------------------|------------------------------------|
| London           |                |                                                        |                     |                   |                               |                                   | - Con-                             |
|                  |                |                                                        |                     |                   |                               |                                   | and the second second              |
| SE1 2A           |                |                                                        |                     |                   |                               |                                   | Micro                              |
|                  |                | 2020 16:38                                             |                     |                   | signed by Tm                  | lachale                           | Drainac                            |
| File S           | urface         | e C2.mdx                                               |                     | Ch                | lecked by                     |                                   | Diamag                             |
| KP Sol           | utions         | 3                                                      |                     | Ne                | etwork 2018.1                 | -                                 |                                    |
| 1 vea            | r Reti         | urn Period                                             | Summar              | v of Ci           | ritical Resul                 | lts bv Maximu                     | m Level (Rank 1                    |
|                  |                |                                                        |                     |                   | or Storm                      |                                   |                                    |
|                  |                |                                                        |                     |                   |                               |                                   |                                    |
|                  |                |                                                        |                     |                   | ation Criteria                |                                   |                                    |
|                  |                |                                                        |                     |                   |                               |                                   | otal Flow 0.000                    |
|                  |                | Hot Start                                              | Level (             | (mm)              | 0                             | Inlet Coe                         | a Storage 2.000<br>ffiecient 0.800 |
| Ma               |                |                                                        | ff (Glok            | oal) 0.50         | 00 Flow per Per               |                                   | /per/day) 0.000                    |
|                  |                |                                                        |                     |                   |                               | Storage Structu                   | mag 1                              |
|                  |                | Number of                                              | Online              | Control           | s 1 Number of                 | Time/Area Diagr                   | ams 7                              |
|                  |                | Number of                                              | Offline             | Control           | s 0 Number of                 | Real Time Contr                   | ols O                              |
|                  |                | Delet 1                                                | <u>S</u><br>1 Model |                   | : Rainfall Deta               |                                   |                                    |
|                  |                |                                                        |                     |                   |                               | Ratio R 0.3<br>Cv (Summer) 0.7    |                                    |
|                  |                |                                                        | 60 (mm)             | DOOCLAIM          |                               | Cv (Winter) 0.8                   |                                    |
|                  | Ma             | argin for Flo                                          | ood Risk            | Warning           | (mm)                          |                                   | 100.0                              |
|                  |                | -                                                      | Anal                |                   |                               | nd Increment (E                   |                                    |
|                  |                |                                                        |                     |                   | tatus                         |                                   | OFF                                |
|                  |                |                                                        | -                   | DVD S<br>nertia S | tatus                         |                                   | ON                                 |
|                  |                |                                                        | T                   | Hertia S          | latus                         |                                   | ON                                 |
|                  |                | P                                                      | rofile(s            |                   |                               |                                   | and Winter                         |
|                  |                | Duration(                                              | s) (mins            |                   |                               | 180, 240, 360,<br>, 2160, 2880, 4 |                                    |
|                  |                |                                                        |                     |                   |                               | 7200, 8                           | 640, 10080                         |
|                  | Ret            | urn Period(s                                           |                     |                   |                               |                                   | 1, 30, 100                         |
|                  |                | Climate C                                              | hange (%            | :)                |                               |                                   | 20, 20, 20                         |
|                  | US/MH          |                                                        | Return              | Climate           | First (X)                     | First (Y)                         | First (Z) Overflo                  |
| PN               | Name           |                                                        |                     |                   | Surcharge                     | Flood                             | Overflow Act.                      |
|                  |                | 240 Winter                                             |                     |                   |                               | 100/240 Winter                    |                                    |
| S1.001           | SS6.1          | 240 Winter<br>240 Winter                               | 1                   | +20%              | 30/600 Winter                 |                                   |                                    |
|                  | SS7.0<br>SS6.2 |                                                        | 1                   | +20%              | 30/480 Winter                 | 100/240 Winter                    |                                    |
|                  | SS6.2<br>SS6.3 |                                                        | 1                   | +20%<br>+20%      | 30/120 Winter                 |                                   |                                    |
|                  |                | 240 Winter                                             | 1                   | +20%              | 30/600 Winter                 | 100/240 Winter                    |                                    |
|                  |                | 240 Winter                                             | 1                   | +20%              | 30/480 Winter                 | ,                                 |                                    |
| S3.002           | SS8.2          | 240 Winter                                             | 1                   | +20%              | 30/480 Winter                 |                                   |                                    |
|                  |                | 240 Winter                                             |                     |                   | 30/720 Winter                 |                                   |                                    |
| S1.004           | SS6.4          | 15 Winter                                              | 1                   |                   | 30/60 Winter                  |                                   |                                    |
| S1.005           | SS6.5          | 240 Winter                                             | 1                   |                   | 30/60 Summer<br>30/60 Winter  |                                   |                                    |
| ST.000           | 330.0<br>336 7 | 1440 Winter                                            | 1                   |                   | 30/60 Winter<br>30/120 Summer |                                   |                                    |
| S1.007           | SS5.4          | 240 Winter<br>240 Winter<br>1440 Winter<br>1440 Winter | 1                   |                   |                               |                                   |                                    |
| S1.007<br>S1.008 |                |                                                        |                     |                   |                               |                                   |                                    |
| S1.007<br>S1.008 |                |                                                        |                     |                   |                               |                                   |                                    |
| s1.007<br>s1.008 |                |                                                        |                     |                   | 2018 Innovyz                  |                                   |                                    |

# RESULTS FOR 1-in-1 YEAR STORM +20% CLIMATE CHANGE ALLOWANCE

| エンエエエ ひしし | ceet  | OHSUIC           | ing Eng             |                   |          |          |              |          | Page 12      |
|-----------|-------|------------------|---------------------|-------------------|----------|----------|--------------|----------|--------------|
| ndon      |       |                  |                     |                   |          |          |              |          |              |
| L 2AY     |       |                  |                     |                   |          |          |              |          | THE A        |
| te 16/01/ | 2020  | 16:38            |                     | Design            | ned by   | Tmachal  | 2            |          | MILLIO       |
| le Surfac |       |                  |                     | Checke            | -        |          | -            |          | Drainage     |
| Solution  |       | 1110423          |                     |                   | ck 2018  | 2 1      |              |          |              |
| 50140101  | 13    |                  |                     | NECMOI            | . K ZUIC | ).1      |              |          |              |
| vear Ret  | urn P | eriod :          | Summarv of          | Critic            | cal Re:  | sults bv | Maxi         | mum Lev  | vel (Rank 1) |
|           |       |                  |                     | for S             |          |          |              |          |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  | Gumahamaa d         | Tleaded           |          |          | Dime         |          |              |
|           | US/MH | Level            | Surcharged<br>Depth |                   | Flow /   | Overflow | Pipe<br>Flow |          | Level        |
| PN        | Name  |                  | (m)                 | (m <sup>3</sup> ) | Cap.     |          |              | Status   | Exceeded     |
|           |       |                  | 0.001               |                   |          |          |              |          |              |
|           |       | 87.799<br>87.730 |                     | 0.000             |          |          | 0.8          | OK<br>OK | 18           |
|           |       | 87.664           |                     | 0.000             |          |          | 2.0          | OK       |              |
|           |       | 87.583           |                     | 0.000             |          |          | 4.3          | OK       |              |
|           |       | 87.513           |                     |                   |          |          | 9.8          | OK       |              |
|           |       | 87.801           | -0.199              | 0.000             | 0.03     |          | 1.0          |          | 18           |
|           |       | 87.626           | -0.199              | 0.000             | 0.03     |          | 1.0          |          |              |
|           |       | 87.481           |                     | 0.000             |          |          | 1.0          |          |              |
|           |       | 87.926           |                     | 0.000             |          |          | 3.9          |          |              |
|           |       | 87.416           |                     | 0.000             |          |          | 9.7          |          |              |
| S1.005    | SS6.5 | 87.350           |                     | 0.000             |          |          | 10.6         | OK       |              |
| S1.006    | SS6.6 | 87.304           |                     | 0.000             |          |          | 11.6         | OK       |              |
| S1.007    | SS6.7 | 86.922           | -0.071              | 0.000             | 0.08     |          | 2.3          | OK       |              |
| S1.008    | SS5.4 | 86.745           | -0.336              | 0.000             | 0.02     |          | 2.3          | OK       |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  |                     |                   |          |          |              | 1        |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  |                     |                   |          |          |              |          |              |
|           |       |                  | NF                  | TWOR              |          | s        |              |          |              |
|           |       |                  |                     | TWOR              |          |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  |                   | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |
|           |       |                  | NC                  | OT FLO            | OD OF    |          |              |          |              |

|               |                                                             |                              | Consult                    | ing En         | g                      |                                  |                | Pa           | ge 13   |
|---------------|-------------------------------------------------------------|------------------------------|----------------------------|----------------|------------------------|----------------------------------|----------------|--------------|---------|
|               | l Stre                                                      | et                           |                            |                |                        |                                  |                |              |         |
| london        |                                                             |                              |                            |                |                        |                                  |                |              | -       |
| SE1 2A        | Y                                                           |                              |                            |                |                        |                                  |                | 8.4          | icin    |
| ate 1         | 6/01/2                                                      | 2020                         | 16:38                      |                | De                     | signed by Tr                     | machale        |              |         |
| 'ile S        | urface                                                      | e C2.                        | mdx                        |                | Ch                     | ecked by                         |                | -01          | anay    |
| P Sol         | utions                                                      | 3                            |                            |                | Ne                     | twork 2018.                      | 1              |              |         |
|               |                                                             |                              |                            |                |                        |                                  |                |              |         |
| <u>30 yea</u> | ar Ret                                                      | urn H                        | Period                     | Summai         | ry of C                | ritical Resu                     | ults by Maxi   | mum Level    | (Rank 1 |
|               |                                                             |                              |                            |                | f                      | <u>or Storm</u>                  |                |              |         |
|               |                                                             |                              |                            |                |                        |                                  |                |              |         |
|               |                                                             |                              |                            |                | Simul                  | ation Criteria                   |                |              |         |
|               |                                                             | Area                         | 1 Reduct                   | cion Fac       |                        | 0 Additiona                      |                | Total Flow ( | .000    |
|               |                                                             |                              | Hot St                     | art (mi        | ns)                    | 0 MADD<br>0                      | Factor * 10m³/ | ha Storage 2 | .000    |
|               |                                                             |                              |                            |                |                        |                                  |                |              |         |
|               |                                                             |                              |                            |                | oal) 0.50<br>./s) 0.00 | 00 Flow per Pe                   | rson per Day ( | 1/per/day) ( | .000    |
|               | LOUT D                                                      | oraye                        | Net Her                    | Scare (1       | .,., 0.00              |                                  |                |              |         |
|               |                                                             |                              |                            |                |                        | s 0 Number of                    |                |              |         |
|               |                                                             |                              |                            |                |                        | s 1 Number of                    |                |              |         |
|               |                                                             | Num                          | iber of                    | Offline        | Control                | s 0 Number of                    | Real Time Con  | trols U      |         |
|               |                                                             |                              |                            | S              | vnthetic               | Rainfall Deta                    | ails           |              |         |
|               |                                                             | 1                            | Rainfal                    | l Model        |                        | FSR                              |                | 300          |         |
|               |                                                             |                              |                            |                | Scotland               | d and Ireland                    |                |              |         |
|               |                                                             |                              | M5-4                       | 50 (mm)        |                        | 14.000                           | Cv (Winter) 0. | 840          |         |
|               | Ma                                                          | argin                        | for Flo                    | od Risk        | Warning                | (mm)                             |                | 100.0        |         |
|               |                                                             |                              |                            |                |                        | estep 2.5 Seco                   | ond Increment  |              |         |
|               |                                                             |                              |                            |                |                        | tatus                            |                | OFF          |         |
|               |                                                             |                              |                            | т              | DVD S<br>nertia S      | tatus                            |                | ON<br>ON     |         |
|               |                                                             |                              |                            | T              | nertia S               | latus                            |                | ON           |         |
|               |                                                             |                              |                            |                |                        |                                  |                |              |         |
|               |                                                             |                              |                            | ofile(s        |                        | 20 60 100                        |                | and Winter   |         |
|               |                                                             | Dui                          | ration(s                   | s) (mins       |                        | , 30, 60, 120,<br>720, 960, 1440 |                |              |         |
|               |                                                             |                              |                            |                |                        | 120/ 000/ 2110                   |                | 8640, 10080  |         |
|               | Retu                                                        |                              |                            | (years         |                        |                                  |                | 1, 30, 100   |         |
|               |                                                             | Cli                          | imate Ch                   | nange (%       | )                      |                                  |                | 20, 20, 20   |         |
|               |                                                             |                              |                            |                |                        |                                  |                |              |         |
|               | US/MH                                                       |                              |                            |                |                        | First (X)                        |                | First (Z)    |         |
| PN            | Name                                                        | S                            | torm                       | reriod         | Change                 | Surcharge                        | Flood          | Overflow     | Act.    |
| s1.000        | SS6.0                                                       | 1440                         | Winter                     | 30             | +20%                   | 30/600 Winter                    | 100/240 Winte  | er           |         |
| S1.001        | SS6.1                                                       | 1440                         | Winter<br>Winter           | 30             |                        | 30/600 Winter                    |                |              |         |
|               |                                                             |                              | Winter<br>Winter           |                |                        | 30/480 Winter<br>30/480 Winter   |                |              |         |
|               |                                                             |                              | Winter                     |                |                        | 30/480 Winter<br>30/120 Winter   |                |              |         |
|               | SS8.0                                                       | 1440                         | Winter                     | 30             | +20%                   | 30/600 Winter                    | 100/240 Winte  | er           |         |
|               | SS8.1                                                       | 1440                         | Winter                     | 30             | +20%                   | 30/480 Winter                    |                |              |         |
|               | SS8.2                                                       | 1440                         | Winter                     | 30             | +20%                   | 30/480 Winter                    |                |              |         |
|               |                                                             | 1440                         | Winter                     | 30             | +20%                   | 30/60 Winter                     |                |              |         |
|               | SS9.0                                                       | 7230                         | Winter                     | 30             | +20%                   | 30/60 Summer                     |                |              |         |
|               | SS9.0<br>SS6.4<br>SS6.5                                     | 1440                         |                            |                | +20%                   | 30/60 Winter                     |                |              |         |
|               | SS9.0<br>SS6.4<br>SS6.5<br>SS6.6                            | 1440<br>1440                 | Winter                     | 30             |                        |                                  |                |              |         |
|               | SS9.0<br>SS6.4<br>SS6.5<br>SS6.6<br>SS6.7                   | 1440<br>1440<br>1440         | Winter<br>Winter           | 30<br>30       | +20%                   | 30/120 Summer                    |                |              |         |
|               | SS9.0<br>SS6.4<br>SS6.5<br>SS6.6<br>SS6.7<br>SS5.4          | 1440<br>1440<br>1440<br>1440 | Winter<br>Winter<br>Winter | 30<br>30<br>30 | +20%<br>+20%           | 30/120 Summer                    |                |              |         |
|               | SS9.0<br>SS6.4<br>SS6.5<br>SS6.6<br>SS6.6<br>SS6.7<br>SS5.4 | 1440<br>1440<br>1440<br>1440 | Winter<br>Winter<br>Winter | 30<br>30<br>30 | +20%<br>+20%           | 30/120 Summer                    |                |              |         |
|               | SS9.0<br>SS6.4<br>SS6.5<br>SS6.6<br>SS6.6<br>SS6.7<br>SS5.4 | 1440<br>1440<br>1440<br>1440 | Winter<br>Winter<br>Winter | 30<br>30<br>30 | +20%<br>+20%           | 30/120 Summer                    |                |              |         |

# RESULTS FOR 1-in-30 YEAR STORM +20% CLIMATE CHANGE ALLOWANCE

| Mill St          | root   |                |                     |                   |         |          |       |                          | Page 14     |
|------------------|--------|----------------|---------------------|-------------------|---------|----------|-------|--------------------------|-------------|
| ndon             |        |                |                     |                   |         |          |       |                          |             |
| 1 2AY            |        |                |                     |                   |         |          |       |                          | and an      |
| te 16/01         | /2020  | 1 16.3         | 8                   | Deci              | anod b  | y Tmacha | 10    |                          | Micro       |
| le Surfa         |        |                | 5                   |                   | ked by  | -        | тe    |                          | Drainago    |
|                  |        | 2.IIIUX        |                     |                   | -       |          |       |                          |             |
| Solutio          | ons    |                |                     | Netw              | ork 20  | 10.1     |       |                          |             |
| l voar Ro        | sturn  | Perio          | d Summary           | of Cri            | tical : | Regults  | hv Ma | vimum Lou                | el (Rank 1) |
| Year No          | SCULII | I GI IO        | a Summary           |                   | Storm   | Nesurus  | by Ma | AIMUM DEV                | er (Rank r) |
|                  |        |                |                     | <u></u>           | 000210  |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        | Water<br>Level | Surcharged<br>Depth |                   | TT1 /   | Overflow | Pipe  |                          | Level       |
|                  | Name   |                | Deptn<br>(m)        | (m <sup>3</sup> ) | Cap.    |          |       | Status                   | Exceeded    |
|                  |        |                |                     |                   | -       |          |       |                          | 1           |
| S1.000           |        |                |                     | 0.000             |         |          |       | FLOOD RISK               | 18          |
| S1.001           |        |                |                     | 0.000             |         |          |       | SURCHARGED               |             |
| S2.000           |        |                |                     | 0.000             |         |          |       | SURCHARGED               |             |
| S1.002<br>S1.003 |        |                |                     | 0.000             |         |          |       | SURCHARGED<br>SURCHARGED |             |
| SI.003<br>S3.000 |        |                |                     |                   |         |          |       | SURCHARGED<br>FLOOD RISK | 18          |
| S3.000<br>S3.001 |        |                |                     |                   |         |          |       | SURCHARGED               | 10          |
| S3.001<br>S3.002 |        |                |                     | 0.000<br>0.000    |         |          |       | SURCHARGED               |             |
| S4.0002          |        |                |                     | 0.000             |         |          |       | SURCHARGED               |             |
| S1.004           |        |                |                     | 0.000             |         |          |       | SURCHARGED               |             |
| S1.005           |        |                |                     | 0.000             |         |          |       | SURCHARGED               |             |
| S1.006           |        |                |                     |                   |         |          |       | SURCHARGED               |             |
| S1.007           |        |                |                     | 0.000             | 0.11    |          |       | SURCHARGED               |             |
| S1.008           |        |                | -0.331              | 0.000             | 0.03    |          | 3.1   | OK                       |             |
|                  |        |                |                     |                   |         |          | L     |                          | 1           |
|                  |        |                |                     |                   |         |          |       | 1                        |             |
|                  |        |                |                     |                   |         |          |       | 7                        |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     | VETWO             |         | )FS      |       |                          |             |
|                  |        |                |                     | NOT FL            |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     | SURCH             |         |          |       |                          |             |
|                  |        |                | F                   | PERMIS            | SIBLE   | IN       |       |                          |             |
|                  |        |                | 1                   | THIS ST           | ORM     |          |       |                          |             |
|                  |        |                |                     | SIMULA            | TION    |          |       |                          |             |
|                  |        |                | Ľ                   |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |
|                  |        |                |                     |                   |         |          |       |                          |             |

| Barret                                                                                                                                      |                |                                        | onsult                                              | ing Er                                                         | ıg                                                                         |                                                   |                                           |                                                                                                                        | Pa                                                               | ge 15          |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------|
| 12 Mil:                                                                                                                                     | l Stre         | eet                                    |                                                     |                                                                |                                                                            |                                                   |                                           |                                                                                                                        |                                                                  |                |
| London                                                                                                                                      |                |                                        |                                                     |                                                                |                                                                            |                                                   |                                           |                                                                                                                        |                                                                  | -              |
| SE1 2A                                                                                                                                      | Y              |                                        |                                                     |                                                                |                                                                            |                                                   |                                           |                                                                                                                        | N                                                                | irm            |
| Date 1                                                                                                                                      | 6/01/2         | 2020                                   | 16:38                                               |                                                                | De                                                                         | signed b                                          | oy Tn                                     | lachale                                                                                                                |                                                                  |                |
| File Su                                                                                                                                     | irface         | e C2.:                                 | mdx                                                 |                                                                | Ch                                                                         | ecked by                                          | 7                                         |                                                                                                                        | D                                                                | i all iay      |
| XP Solu                                                                                                                                     | ations         | 3                                      |                                                     |                                                                | Ne                                                                         | twork 20                                          | )18.1                                     |                                                                                                                        |                                                                  |                |
| <u>100 y</u>                                                                                                                                | ear R          | eturn                                  | Perio                                               | od Sumi                                                        |                                                                            | Critica<br>for Stor                               |                                           | sults by Max                                                                                                           | imum Leve                                                        | el (Ran)       |
|                                                                                                                                             |                | Hot<br>Headlc<br>ewage<br>Numb<br>Numb | Hot Start<br>Start<br>per heo<br>er of I<br>mber of | art (mi<br>Level )<br>f (Glok<br>ctare (]<br>nput Hy<br>Online | ctor 1.00<br>.ns)<br>(mm)<br>oal) 0.50<br>./s) 0.00<br>drograph<br>Control | 0 M<br>00 Flow pe<br>00<br>s 0 Numbe<br>s 1 Numbe | ional<br>MADD H<br>er Per<br>r of<br>r of | L Flow - % of '<br>Factor * 10m³/I<br>Inlet Co<br>rson per Day (<br>Storage Struct<br>Time/Area Diag<br>Real Time Cont | ha Storage :<br>effiecient  <br>l/per/day)  <br>ures 1<br>rams 7 | 2.000<br>0.800 |
|                                                                                                                                             |                | Num                                    | ber of                                              |                                                                |                                                                            |                                                   |                                           |                                                                                                                        | rols O                                                           |                |
|                                                                                                                                             |                | P                                      |                                                     | L Model                                                        | Scotland                                                                   | d and Irel                                        | FSR<br>and C                              |                                                                                                                        | 750                                                              |                |
|                                                                                                                                             | Ma             | argin                                  | for Flc                                             | Anal                                                           | Warning<br>ysis Tim<br>DTS S<br>DVD S<br>nertia S                          | estep 2.5<br>tatus<br>tatus                       | Seco                                      | nd Increment (                                                                                                         | 100.0<br>Extended)<br>OFF<br>ON<br>ON                            |                |
|                                                                                                                                             |                | Dur                                    |                                                     | ofile(s<br>;) (mins                                            | ) 15                                                                       |                                                   |                                           | 180, 240, 360<br>, 2160, 2880,                                                                                         |                                                                  |                |
|                                                                                                                                             | Ret            |                                        |                                                     | (years<br>ange (%                                              |                                                                            |                                                   |                                           |                                                                                                                        | 1, 30, 100<br>20, 20, 20                                         |                |
| PN                                                                                                                                          | US/MH<br>Name  |                                        |                                                     |                                                                |                                                                            | First (<br>Surchar                                |                                           | First (Y)<br>Flood                                                                                                     | First (Z)<br>Overflow                                            |                |
| s1.000                                                                                                                                      | SS6.0          | 1440                                   | Winter                                              | 100                                                            | +20%                                                                       | 30/600 Wi                                         | inter                                     | 100/240 Winte                                                                                                          | r                                                                |                |
| S1.001                                                                                                                                      | SS6.1          | 1440                                   | Winter                                              | 100                                                            | +20%                                                                       | 30/600 Wi                                         | inter                                     |                                                                                                                        |                                                                  |                |
| S2.000                                                                                                                                      | SS7.0          | 600                                    | Winter                                              | 100                                                            | +20%                                                                       | 30/480 Wi                                         | Inter                                     |                                                                                                                        |                                                                  |                |
| S1.002                                                                                                                                      | SS6.2          | 600                                    | Winter                                              | 100                                                            | +20%                                                                       | 30/480 Wi                                         | Inter                                     |                                                                                                                        |                                                                  |                |
| S1.003                                                                                                                                      | 556.3<br>SS8 0 | 600<br>1440                            | Winter                                              | 100                                                            | +20%                                                                       | 30/600 ₩3                                         | inter                                     | 100/240 Winto                                                                                                          | r                                                                |                |
| S3.001                                                                                                                                      | SS8.1          | 1440                                   | Winter                                              | 100                                                            | +20%                                                                       | 30/480 Wi                                         | inter                                     | 100/240 Wille                                                                                                          | -                                                                |                |
| s3.002                                                                                                                                      | SS8.2          | 480                                    | Winter                                              | 100                                                            | +20%                                                                       | 30/480 Wi                                         | inter                                     |                                                                                                                        |                                                                  |                |
| S4.000                                                                                                                                      | SS9.0          | 480                                    | Winter                                              | 100                                                            | +20%                                                                       | 30/720 Wi                                         | inter                                     |                                                                                                                        |                                                                  |                |
|                                                                                                                                             | SS6.4          | 480                                    | Winter                                              | 100                                                            | +20%                                                                       | 30/60 Wi                                          | inter                                     |                                                                                                                        |                                                                  |                |
| S1.004                                                                                                                                      | SS6.5          | 480                                    | Winter                                              | 100                                                            | +20%                                                                       | 30/60 St                                          | ummer                                     |                                                                                                                        |                                                                  |                |
| s1.004                                                                                                                                      | 555.6          | 480                                    | Winter                                              | 100                                                            | +20%                                                                       | 30/60 Wi<br>30/120 St                             | Immer                                     |                                                                                                                        |                                                                  |                |
| s1.004<br>s1.005<br>s1.006<br>s1.007                                                                                                        | SS6 7          |                                        |                                                     | T 0 0                                                          | 1200                                                                       | 20,220 00                                         |                                           |                                                                                                                        |                                                                  |                |
| \$1.001<br>\$2.000<br>\$1.002<br>\$1.003<br>\$3.000<br>\$3.001<br>\$3.002<br>\$4.000<br>\$1.004<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008 | SS6.7<br>SS5.4 | 480                                    | Winter                                              | 100                                                            | +20%                                                                       |                                                   |                                           |                                                                                                                        |                                                                  |                |
| s1.004<br>s1.005<br>s1.006<br>s1.007<br>s1.008                                                                                              | SS6.7<br>SS5.4 | 480                                    | Winter                                              | 100                                                            | +20%                                                                       |                                                   |                                           |                                                                                                                        |                                                                  |                |
| s1.004<br>s1.005<br>s1.006<br>s1.007<br>s1.008                                                                                              | SS6.7<br>SS5.4 | 480                                    | Winter                                              | 100                                                            | +20%                                                                       |                                                   |                                           |                                                                                                                        |                                                                  |                |

# RESULTS FOR 1-in-100 YEAR STORM +20% CLIMATE CHANGE ALLOWANCE

| Barrett M       | ahony                | Consu            | lting Eng                                       |                  |         |           |             |                          | Page 16    |
|-----------------|----------------------|------------------|-------------------------------------------------|------------------|---------|-----------|-------------|--------------------------|------------|
| 12 Mill S       | treet                |                  |                                                 |                  |         |           |             |                          |            |
| London          |                      |                  |                                                 |                  |         |           |             |                          |            |
| SE1 2AY         |                      |                  |                                                 |                  |         |           |             |                          | Micco      |
| Date 16/0       | 1/2020               | 0 16:38          | 3                                               | Desi             | gned b  | y Tmacha  | le          |                          | Drainage   |
| File Surf       | ace C2               | 2.mdx            |                                                 | Chec             | ked by  |           |             |                          | Drainage   |
| XP Soluti       | ons                  |                  |                                                 | Netw             | ork 20  | 18.1      |             |                          |            |
|                 |                      |                  |                                                 |                  |         |           |             |                          |            |
| <u>100 year</u> | : Retu               | rn Per           | iod Summa:                                      | -                |         |           | s by        | Maximum L                | evel (Rank |
|                 |                      |                  |                                                 | <u>1) fc</u>     | or Stor | <u>.m</u> |             |                          |            |
|                 |                      |                  |                                                 |                  |         |           |             |                          |            |
|                 |                      | Water            | Surcharged                                      | Flooded          |         |           | Pipe        |                          |            |
|                 | US/MH                |                  | Depth                                           |                  | Flow /  | Overflow  | -           |                          | Level      |
| PN              | Name                 | (m)              | (m)                                             | (m³)             | Cap.    | (l/s)     | (l/s)       | Status                   | Exceeded   |
| \$1.000         | SS6.0                | 88.537           | 0.537                                           | 37.266           | 0.10    |           | 2.9         | FLOOD                    | 18         |
|                 |                      | 88.538           |                                                 |                  |         |           |             | SURCHARGED               | 10         |
|                 |                      | 88.559           |                                                 |                  |         |           | 4.0         | SURCHARGED               |            |
| S1.002          | SS6.2                | 88.553           | 0.802                                           | 0.000            | 0.24    |           | 7.1         | FLOOD RISK               |            |
|                 |                      | 88.566           |                                                 | 0.000            |         |           |             | SURCHARGED               |            |
|                 |                      | 88.532           |                                                 | 32.340           |         |           | 1.6         |                          | 18         |
|                 |                      | 88.533           | 0.707                                           | 0.000            | 0.05    |           |             | SURCHARGED               |            |
|                 |                      | 88.549           |                                                 | 0.000            |         |           |             | SURCHARGED               |            |
|                 |                      | 88.586<br>88.574 |                                                 | 0.000            |         |           |             | SURCHARGED               |            |
|                 |                      | 88.581           |                                                 | 0.000            |         |           |             | SURCHARGED<br>SURCHARGED |            |
|                 |                      | 88.579           |                                                 | 0.000            |         |           |             | SURCHARGED               |            |
|                 |                      | 88.577           |                                                 | 0.000            |         |           |             | SURCHARGED               |            |
|                 |                      | 86.750           |                                                 | 0.000            |         |           | 3.3         |                          |            |
| l l             | N ST<br>OVER<br>RETE | ORMS<br>RFLOV    | OCCURS<br>OF DUF<br>VOLUM<br>NBASIN.<br>REMAINS | RATION<br>E TO E | N GRE   | ATER T    | HAN<br>D ON | 240min.<br>SITE IN       | ₹K         |
|                 |                      |                  |                                                 |                  |         |           |             |                          |            |
|                 |                      |                  | A.                                              | 1982-20          | 18 Tnn  | 0.00.02.0 |             |                          |            |
|                 |                      |                  | U.                                              | 1 702 - 20       | TO THU  | ovyze     |             |                          |            |

# 9 CLIMATE AIR QUALITY - APPENDICES

# 9.1 AMBIENT AIR QUALITY STANDARDS

# **Ambient Air Quality Standards**

National standards for ambient air pollutants in Ireland have generally ensued from Council Directives enacted in the EU (& previously the EC & EEC). The initial interest in ambient air pollution legislation in the EU dates from the early 1980s and was in response to the most serious pollutant problems at that time which was the issue of acid rain. As a result of this sulphur dioxide, and later nitrogen dioxide, were both the focus of EU legislation. Linked to the acid rain problem was urban smog associated with fuel burning for space heating purposes. Also apparent at this time were the problems caused by leaded petrol and EU legislation was introduced to deal with this problem in the early 1980s.

In recent years the EU has focused on defining a basis strategy across the EU in relation to ambient air quality. In 1996, a Framework Directive, Council Directive 96/62/EC, on ambient air quality assessment and management was enacted. The aims of the Directive are fourfold. Firstly, the Directive's aim is to establish objectives for ambient air quality designed to avoid harmful effects to health. Secondly, the Directive aims to assess ambient air quality on the basis of common methods and criteria throughout the EU. Additionally, it is aimed to make information on air quality available to the public via alert thresholds and fourthly, it aims to maintain air quality where it is good and improve it in other cases.

As part of these measures to improve air quality, the European Commission has adopted proposals for daughter legislation under Directive 96/62/EC. The first of these directives to be enacted, Council Directive 1999/30/EC, has been passed into Irish Law as S.I. No 271 of 2002 (Air Quality Standards Regulations 2002) and has set limit values which came into operation on 17<sup>th</sup> June 2002. The Air Quality Standards Regulations 2002 detail margins of tolerance, which are trigger levels for certain types of action in the period leading to the attainment date. The margin of tolerance varies from 60% for lead, to 30% for 24-hour limit value for PM<sub>10</sub>, 40% for the hourly and annual limit value for NO<sub>2</sub> and 26% for hourly SO<sub>2</sub> limit values. The margin of tolerance commenced from June 2002 and started to reduce from 1<sup>st</sup> January 2003 and every 12 months thereafter by equal annual percentages to reach 0% by the attainment date. A second daughter directive, EU Council Directive 2000/69/EC, has published limit values for both carbon monoxide and benzene in ambient air. This has also been passed into Irish Law under the Air Quality Standards Regulations 2002.

The most recent EU Council Directive on ambient air quality was published on the 11/06/08 which has been transposed into Irish Law as S.I. 180 of 2011. Council Directive 2008/50/EC combines the previous Air Quality Framework Directive and its subsequent daughter directives. Provisions were also made for the inclusion of new ambient limit values relating to  $PM_{2.5}$ . The margins of tolerance specific to each pollutant were also slightly adjusted from previous directives. In regard to existing ambient air quality standards, it is not proposed to modify the standards but to strengthen existing provisions to ensure that non-compliances are removed. In addition, new ambient standards for  $PM_{2.5}$  are included in Directive 2008/50/EC. The approach for  $PM_{2.5}$  was to establish a target value of 25 µg/m<sup>3</sup>, as an annual average (to be attained everywhere by 2010) and a limit value of 25 µg/m<sup>3</sup>, as an annual average (to be attained everywhere by 2010) and a limit value of 25 µg/m<sup>3</sup>, as an annual average exposure reduction target will range from 0% (for  $PM_{2.5}$  concentrations of less than 8.5 µg/m<sup>3</sup> to 20% of the average exposure indicator (AEI) for concentrations of between 18 - 22 µg/m<sup>3</sup>). Where the AEI is currently greater than 22 µg/m<sup>3</sup> all appropriate measures should be employed to reduce this level to 18 µg/m<sup>3</sup> by 2020. The AEI is based on measurements taken in urban background locations averaged over a three year period from 2008 - 2010 and again from 2018-2020. Additionally, an exposure concentration obligation of 20 µg/m<sup>3</sup> was set to be complied with by 2015 again based on the AEI.

Although the EU Air Quality Limit Values are the basis of legislation, other thresholds outlined by the EU Directives are used which are triggers for particular actions. The Alert Threshold is defined in Council Directive 96/62/EC as

"a level beyond which there is a risk to human health from brief exposure and at which immediate steps shall be taken as laid down in Directive 96/62/EC". These steps include undertaking to ensure that the necessary steps are taken to inform the public (e.g. by means of radio, television and the press).

The Margin of Tolerance is defined in Council Directive 96/62/EC as a concentration which is higher than the limit value when legislation comes into force. It decreases to meet the limit value by the attainment date. The Upper Assessment Threshold is defined in Council Directive 96/62/EC as a concentration above which high quality measurement is mandatory. Data from measurement may be supplemented by information from other sources, including air quality modelling.

An annual average limit for both  $NO_X$  (NO and  $NO_2$ ) is applicable for the protection of vegetation in highly rural areas away from major sources of  $NO_X$  such as large conurbations, factories and high road vehicle activity such as a dual carriageway or motorway. Annex VI of EU Directive 1999/30/EC identifies that monitoring to demonstrate compliance with the NOX limit for the protection of vegetation should be carried out distances greater than:

- 5 km from the nearest motorway or dual carriageway
- 5 km from the nearest major industrial installation
- 20 km from a major urban conurbation

As a guideline, a monitoring station should be indicative of approximately 1000 km<sup>2</sup> of surrounding area. Under the terms of EU Framework Directive on Ambient Air Quality (96/62/EC), geographical areas within member states have been classified in terms of zones. The zones have been defined in order to meet the criteria for air quality monitoring, assessment and management as described in the Framework Directive and Daughter Directives. Zone A is defined as Dublin and its environs, Zone B is defined as Cork City, Zone C is defined as 23 urban areas with a population greater than 15,000 and Zone D is defined as the remainder of the country. The Zones were defined based on among other things, population and existing ambient air quality.

EU Council Directive 96/62/EC on ambient air quality and assessment has been adopted into Irish Legislation (S.I. No. 33 of 1999). The act has designated the Environmental Protection Agency (EPA) as the competent authority responsible for the implementation of the Directive and for assessing ambient air quality in the State. Other commonly referenced ambient air quality standards include the World Health Organisation. The WHO guidelines differ from air quality standards in that they are primarily set to protect public health from the effects of air pollution. Air quality standards, however, are air quality guidelines recommended by governments, for which additional factors, such as socio-economic factors, may be considered.

# **Air Dispersion Modelling**

The inputs to the DMRB model consist of information on road layouts, receptor locations, annual average daily traffic movements, annual average traffic speeds and background concentrations. Using this input data the model predicts ambient ground level concentrations at the worst-case sensitive receptor using generic meteorological data. The DMR B has recently undergone an extensive validation exercise as part of the UK's Review and Assessment Process to designate areas as Air Quality Management Areas (AQMAs). The validation exercise was carried out at 12 monitoring sites within the UK DEFRAs national air quality monitoring network. The validation exercise was carried out for NO<sub>X</sub>, NO<sub>2</sub> and PM<sub>10</sub>, and included urban background and kerbside/roadside locations, "open" and "confined" settings and a variety of geographical locations.

In relation to NO<sub>2</sub>, the model generally over-predicts concentrations, with a greater degree of over-prediction at "open" site locations. The performance of the model with respect to NO<sub>2</sub> mirrors that of NO<sub>x</sub> showing that the over-prediction is due to NO<sub>x</sub> calculations rather than the NO<sub>x</sub>:NO<sub>2</sub> conversion. Within most urban situations, the model overestimates annual mean NO<sub>2</sub> concentrations by between 0 to 40% at confined locations and by 20 to



60% at open locations. The performance is considered comparable with that of sophisticated dispersion models when applied to situations where specific local validation corrections have not been carried out.

The model also tends to over-predict  $PM_{10}$ . Within most urban situations, the model will over-estimate annual mean  $PM_{10}$  concentrations by between 20 to 40%. The performance is comparable to more sophisticated models, which, if not validated locally, can be expected to predict concentrations within the range of 50%. Thus, the validation exercise has confirmed that the model is a useful screening tool for the Second Stage Review and Assessment, for which a conservative approach is applicable.

# 9.2 TRANSPORT INFRASTRUCTURE IRELAND SIGNIFICANCE CRITERIA

| Magnitude of  | Annual Mean $NO_2$ /                              | Annual Mean PM <sub>2.5</sub>                             |  |
|---------------|---------------------------------------------------|-----------------------------------------------------------|--|
| Change        | PM <sub>10</sub>                                  |                                                           |  |
| Large         | Increase / decrease<br>≥4 μg/m <sup>3</sup>       | Increase / decrease ≥2.5 µg/m <sup>3</sup>                |  |
| Medium        | Increase / decrease 2<br>- <4 μg/m <sup>3</sup>   | Increase / decrease 1.25 - <2.5 $\mu\text{g}/\text{m}^3$  |  |
| Small         | Increase / decrease<br>0.4 - <2 μg/m <sup>3</sup> | Increase / decrease 0.25 - <1.25 $\mu\text{g}/\text{m}^3$ |  |
| Imperceptible | Increase / decrease <0.4 μg/m <sup>3</sup>        | Increase / decrease <0.25                                 |  |

Table A1: Definition of Impact Magnitude for Changes in Ambient Pollutant Concentrations

| Absolute Concentration in Relation to                                         | Change in Concentration Note 1 |                |                |  |  |
|-------------------------------------------------------------------------------|--------------------------------|----------------|----------------|--|--|
| Objective/Limit Value                                                         | Small                          | Medium         | Large          |  |  |
| Increase with Scheme                                                          |                                |                |                |  |  |
| Above Objective/Limit Value With                                              | Slight Adverse                 | Moderate       | Substantial    |  |  |
| Scheme ( $\geq$ 40 µg/m <sup>3</sup> of NO <sub>2</sub> or PM <sub>10</sub> ) |                                | Adverse        | Adverse        |  |  |
| (≥25 μg/m <sup>3</sup> of PM <sub>2.5</sub> )                                 |                                |                |                |  |  |
| Just Below Objective/Limit Value With                                         | Slight Adverse                 | Moderate       | Moderate       |  |  |
| Scheme (36 - <40 $\mu$ g/m <sup>3</sup> of NO <sub>2</sub> or                 |                                | Adverse        | Adverse        |  |  |
| PM <sub>10</sub> ) (22.5 - <25 μg/m3 of PM <sub>2.5</sub> )                   |                                |                |                |  |  |
| Below Objective/Limit Value With                                              | Negligible                     | Slight Adverse | Slight Adverse |  |  |
| Scheme (30 - <36 $\mu$ g/m <sup>3</sup> of NO <sub>2</sub> or                 |                                |                |                |  |  |
| PM <sub>10</sub> ) (18.75 - <22.5 µg/m <sup>3</sup> of PM <sub>2.5</sub> )    |                                |                |                |  |  |
| Well Below Objective/Limit Value                                              | Negligible                     | Negligible     | Slight Adverse |  |  |
| With Scheme (<30 $\mu$ g/m <sup>3</sup> of NO <sub>2</sub> or                 |                                |                |                |  |  |
| PM <sub>10</sub> ) (<18.75 μg/m <sup>3</sup> of PM <sub>2.5</sub> )           |                                |                |                |  |  |
| De                                                                            | crease with Scheme             | 2              |                |  |  |
| Above Objective/Limit Value With                                              | Slight Beneficial              | Moderate       | Substantial    |  |  |
| Scheme ( $\geq$ 40 µg/m <sup>3</sup> of NO <sub>2</sub> or PM <sub>10</sub> ) |                                | Beneficial     | Beneficial     |  |  |
| (≥25 µg/m³ of PM <sub>2.5</sub> )                                             |                                |                |                |  |  |
| Just Below Objective/Limit Value With                                         | Slight Beneficial              | Moderate       | Moderate       |  |  |
| Scheme (36 - <40 $\mu$ g/m <sup>3</sup> of NO <sub>2</sub> or                 |                                | Beneficial     | Beneficial     |  |  |
| PM <sub>10</sub> ) (22.5 - <25 μg/m <sup>3</sup> of PM <sub>2.5</sub> )       |                                |                |                |  |  |

| Below Objective/Limit Value With                                           | Negligible | Slight Beneficial | Slight Beneficial |
|----------------------------------------------------------------------------|------------|-------------------|-------------------|
| Scheme (30 - <36 $\mu$ g/m <sup>3</sup> of NO <sub>2</sub> or              |            |                   |                   |
| PM <sub>10</sub> ) (18.75 - <22.5 μg/m <sup>3</sup> of PM <sub>2.5</sub> ) |            |                   |                   |
| Well Below Objective/Limit Value                                           | Negligible | Negligible        | Slight Beneficial |
| With Scheme (<30 $\mu$ g/m <sup>3</sup> of NO <sub>2</sub> or              |            |                   |                   |
| PM <sub>10</sub> ) (<18.75 μg/m <sup>3</sup> of PM <sub>2.5</sub> )        |            |                   |                   |

*Note 1* Well Below Standard = <75% of limit value.

Table A2: Air Quality Impact Significance Criteria For Annual Mean NO2 and PM10 and PM2.5 Concentrations at a Receptor

| Absolute Concentration in Relation to | Change in Concentration Note 1 |                   |                   |  |
|---------------------------------------|--------------------------------|-------------------|-------------------|--|
| Objective/Limit Value                 | Small                          | Medium            | Large             |  |
| In                                    | crease with Scheme             |                   |                   |  |
| Above Objective/Limit Value With      | Slight Adverse                 | Moderate          | Substantial       |  |
| Scheme (≥35 days)                     |                                | Adverse           | Adverse           |  |
| Just Below Objective/Limit Value With | Slight Adverse                 | Moderate          | Moderate          |  |
| Scheme (32 - <35 days)                |                                | Adverse           | Adverse           |  |
| Below Objective/Limit Value With      | Negligible                     | Slight Adverse    | Slight Adverse    |  |
| Scheme (26 - <32 days)                |                                |                   |                   |  |
| Well Below Objective/Limit Value      | Negligible                     | Negligible        | Slight Adverse    |  |
| With Scheme (<26 days)                |                                |                   |                   |  |
| De                                    | crease with Scheme             | 2                 |                   |  |
| Above Objective/Limit Value With      | Slight Beneficial              | Moderate          | Substantial       |  |
| Scheme (≥35 days)                     |                                | Beneficial        | Beneficial        |  |
| Just Below Objective/Limit Value With | Slight Beneficial              | Moderate          | Moderate          |  |
| Scheme (32 - <35 days)                |                                | Beneficial        | Beneficial        |  |
| Below Objective/Limit Value With      | Negligible                     | Slight Beneficial | Slight Beneficial |  |
| Scheme (26 - <32 days)                |                                |                   |                   |  |
| Well Below Objective/Limit Value      | Negligible                     | Negligible        | Slight Beneficial |  |
| With Scheme (<26 days)                |                                |                   |                   |  |

**Note 1** Where the Impact Magnitude is Imperceptible, then the Impact Description is Negligible Table A3: Air Quality Impact Significance Criteria For Changes to Number of Days with  $PM_{10}$  Concentration Greater than 50  $\mu g/m^3$  at a Receptor

# 9.3 DUST MINIMISATION PLAN

The objective of dust control at the site is to ensure that no significant nuisance occurs at nearby sensitive receptors. In order to develop a workable and transparent dust control strategy, the following management plan has been formulated by drawing on best practice guidance from Ireland and the United Kingdom.

# Site Management

The aim is to ensure good site management by avoiding dust becoming airborne at source. This will be done through good design and effective control strategies.

At the construction/demolition planning stage, the siting of activities and storage piles will take note of the location of sensitive receptors and prevailing wind directions in order to minimise the potential for significant dust nuisance (see Figure 9.1 for the windrose for Casement Aerodrome). As the prevailing wind is predominantly southwesterly, locating construction/demolition compounds and storage piles downwind of sensitive receptors will minimise the potential for dust nuisance to occur at sensitive receptors.



Good site management will include the ability to respond to adverse weather conditions by either restricting operations on-site or quickly implementing effective control measures before the potential for nuisance occurs. When rainfall is greater than 0.2mm/day, dust generation is generally suppressed. The potential for significant dust generation is also reliant on threshold wind speeds of greater than 10 m/s (19.4 knots) (at 7m above ground) to release loose material from storage piles and other exposed materials. Particular care should be taken during periods of high winds (gales) as these are periods where the potential for significant dust emissions are highest. The prevailing meteorological conditions in the vicinity of the site are favourable in general for the suppression of dust for a significant period of the year. Nevertheless, there will be infrequent periods were care will be needed to ensure that dust nuisance does not occur.

The following measures shall be taken in order to avoid dust nuisance occurring under unfavourable meteorological conditions:

- The Principal Contractor or equivalent must monitor the contractors' performance to ensure that the proposed mitigation measures are implemented and that dust impacts and nuisance are minimised;
- During working hours, dust control methods will be monitored as appropriate, depending on the prevailing • meteorological conditions;
- The name and contact details of a person to contact regarding air quality and dust issues shall be displayed on the site boundary, this notice board should also include head/regional office contact details;
- It is recommended that community engagement be undertaken before works commence on site explaining the nature and duration of the works to local residents and businesses;
- A complaints register will be kept on site detailing all telephone calls and letters of complaint received in connection with dust nuisance or air quality concerns, together with details of any remedial actions carried out;
- The Principal Contractor or equivalent must monitor the contractors' performance to ensure that the proposed mitigation measures are implemented and that dust impacts and nuisance are minimised;
- During working hours, dust control methods will be monitored as appropriate, depending on the prevailing meteorological conditions;
- The name and contact details of a person to contact regarding air quality and dust issues shall be displayed on the site boundary, this notice board should also include head/regional office contact details;
- It is recommended that community engagement be undertaken before works commence on site explaining the nature and duration of the works to local residents and businesses;
- A complaints register will be kept on site detailing all telephone calls and letters of complaint received in connection with dust nuisance or air quality concerns, together with details of any remedial actions carried out;
- It is the responsibility of the contractor at all times to demonstrate full compliance with the dust control conditions herein;
- At all times, the procedures put in place will be strictly monitored and assessed.

The dust minimisation measures shall be reviewed at regular intervals during the works to ensure the effectiveness of the procedures in place and to maintain the goal of minimisation of dust through the use of best practice and procedures. In the event of dust nuisance occurring outside the site boundary, site activities will be reviewed and satisfactory procedures implemented to rectify the problem. Specific dust control measures to be employed are described below.

# Site Roads / Haulage Routes

Movement of construction trucks along site roads (particularly unpaved roads) can be a significant source of fugitive dust if control measures are not in place. The most effective means of suppressing dust emissions from unpaved roads is to apply speed restrictions. Studies show that these measures can have a control efficiency ranging from 25 to 80%.

- A speed restriction of 20 km/hr will be applied as an effective control measure for dust for on-site vehicles using unpaved site roads;
- Access gates to the site shall be located at least 10m from sensitive receptors where possible;
- Bowsers or suitable watering equipment will be available during periods of dry weather throughout the construction/demolition period. Research has found that watering can reduce dust emissions by 50%. Watering shall be conducted during sustained dry periods to ensure that unpaved areas are kept moist. The required application frequency will vary according to soil type, weather conditions and vehicular use;
- Any hard surface roads will be swept to remove mud and aggregate materials from their surface while any unsurfaced roads shall be restricted to essential site traffic only.

# Land Clearing / Earth Moving

Land clearing / earth-moving works during periods of high winds and dry weather conditions can be a significant source of dust.

- During dry and windy periods, and when there is a likelihood of dust nuisance, watering shall be conducted to ensure moisture content of materials being moved is high enough to increase the stability of the soil and thus suppress dust;
- During periods of very high winds (gales), activities likely to generate significant dust emissions should be postponed until the gale has subsided.

# **Storage Piles**

The location and moisture content of storage piles are important factors which determine their potential for dust emissions.

- Overburden material will be protected from exposure to wind by storing the material in sheltered regions of the site. Where possible storage piles should be located downwind of sensitive receptors;
- Regular watering will take place to ensure the moisture content is high enough to increase the stability of the soil and thus suppress dust. The regular watering of stockpiles has been found to have an 80% control efficiency;
- Where feasible, hoarding will be erected around site boundaries to reduce visual impact. This will also have an added benefit of preventing larger particles from impacting on nearby sensitive receptors.

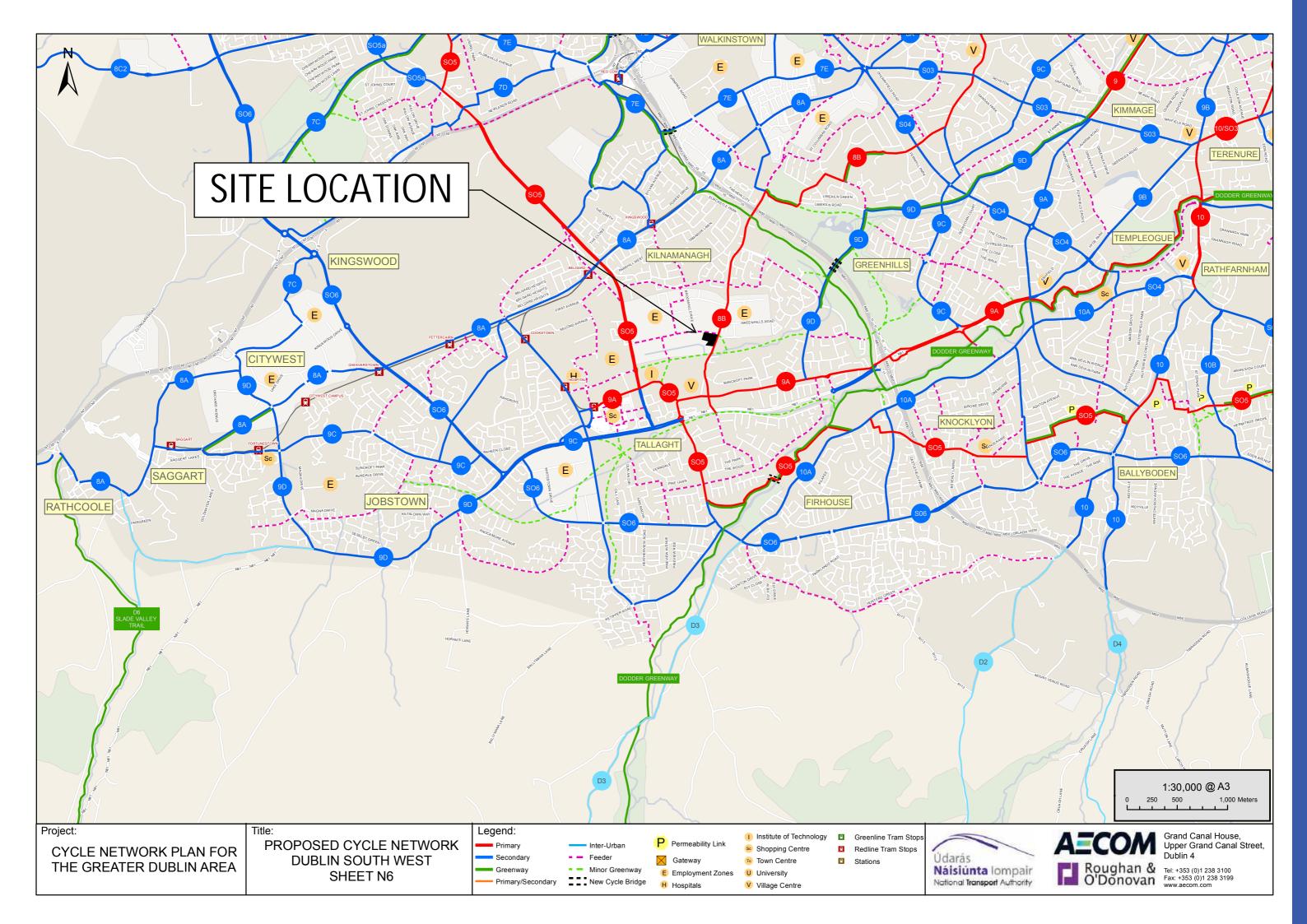
# Site Traffic on Public Roads

Spillage and blow-off of debris, aggregates and fine material onto public roads should be reduced to a minimum by employing the following measures:

- Vehicles delivering or collecting material with potential for dust emissions shall be enclosed or covered with tarpaulin at all times to restrict the escape of dust;
- At the main site traffic exits, a wheel wash facility shall be installed if feasible. All trucks leaving the site must pass through the wheel wash. In addition, public roads outside the site shall be regularly inspected for cleanliness, as a minimum on a daily basis, and cleaned as necessary.

# Summary of Dust Mitigation Measures

The pro-active control of fugitive dust will ensure that the prevention of significant emissions, rather than an inefficient attempt to control them once they have been released, will contribute towards the satisfactory performance of the contractor. The key features with respect to control of dust will be:


- The specification of a site policy on dust and the identification of the site management responsibilities for dust issues;
- The development of a documented system for managing site practices with regard to dust control;
- The development of a means by which the performance of the dust minimisation plan can be regularly monitored and assessed; and
- The specification of effective measures to deal with any complaints received.



# 11 TRAFFIC & TRANSPORTATION - APPENDICES

# 11.1CYCLE NETWORK PLAN





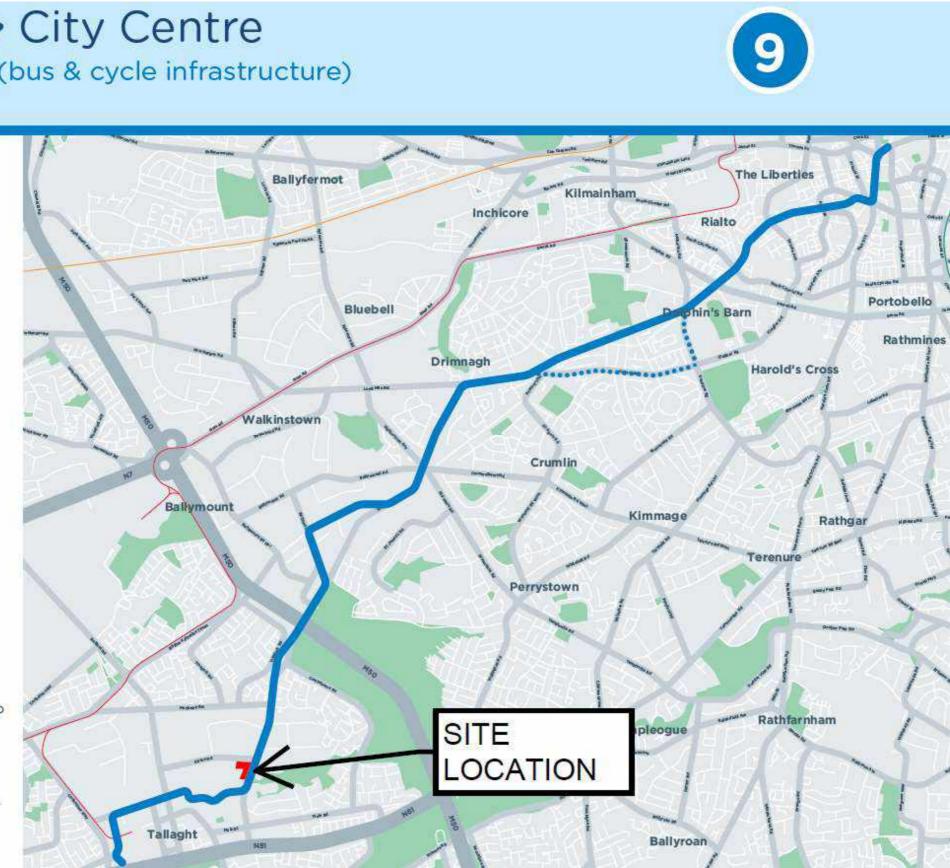
# **11.2BUS CONNECTS PROPOSAL**

# Greenhills > City Centre Core Bus Corridor (bus & cycle infrastructure)

# **Key Facts**

- Route length 11kms
- O Current bus journey time up to 80mins
- BusConnects journey time 35-40mins
- Future bus journey time without BusConnects 100mins+

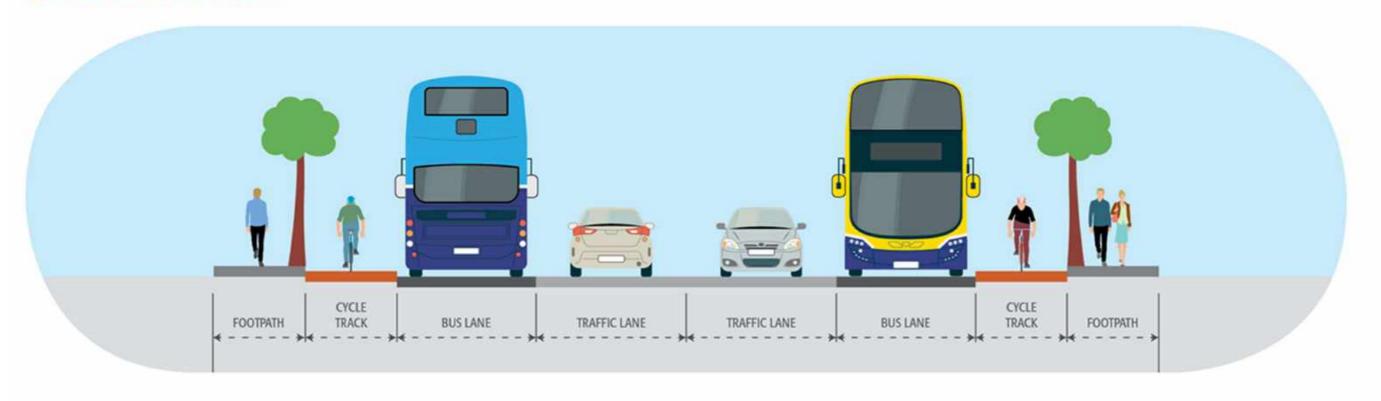
# Potential Impacts


- Parts of front gardens removed
- Loss of parking spaces
- O Changes to traffic movements
- Loss of trees

# Additional Specific Challenges on Route

- Restricted width on many roads along this route requiring road widening.
- Walkinstown Roundabout is challenging for both bus and cycle movements.
- A proposal is to construct new link roads to divert all traffic via Calmount Avenue and Calmount Road while still maintaining access to the old section of Greenhills Road.
- A proposal is to realign a section of the Greenhills Road adjoining Castletymon Road junction.

**Bus Route** 


Alternative Cycle Route .....





# **11.3 BUS CONNECTS ROAD LAYOUT**

# **Optimum Road Layout**





FORMER GALLAHER'S SITE, AIRTON

# 13 WASTE MANAGEMENT - APPENDICES

# 13.1 OPERATIONAL WASTE AND RECYCLING MANAGEMENT PLAN





#### Prepared for

Greenleaf Homes Ltd.

Prepared by

Traynor Environmental Ltd

Reference Number

19.270 TE

Date of Issue

13<sup>th</sup> February 2020

| Belturbet Business Park,    |
|-----------------------------|
| Creeny.                     |
| Belturbet,                  |
| Co Cavan                    |
| T: + 353 49 9522236         |
| E: nevin@traynorenv.com     |
| www.traynorenvironmental.ie |
|                             |
|                             |
|                             |
|                             |

# Operational Waste & Recycling Management Plan Client: Greenleaf Homes Ltd Traynor Env Ref: 19.270 TE Status: Final Report Date: 13<sup>th</sup> February 2020

| Report Title:  | Operational Waste & Recycling Management Plan                                           |
|----------------|-----------------------------------------------------------------------------------------|
| Doc Reference: | 19.270                                                                                  |
| Client:        | Greenleaf Homes Ltd                                                                     |
| Authorised By: | Nos Teaple                                                                              |
|                | Nevin Traynor BSc. Env, H.Dip I.T, Cert SHWW, EPA/FAS Cert.<br>Environmental Consultant |

| Rev No | Status | Date                           | Writer       | Reviewer      |
|--------|--------|--------------------------------|--------------|---------------|
| 1.     | Final  | 13 <sup>th</sup> February 2020 | Angela Kelly | Nevin Traynor |

This report refers, within the limitations stated, to the condition of the site at the time of the report. No warranty is given as to the possibility of future changes in the condition of the site. The report as presented is based on the information sources as detailed in this report, and hence maybe subject to review in the future if more information is obtained or scientific understanding changes.

© This Report is the copyright of Traynor Environmental Ltd. Any unauthorized reproduction or usage by any person other than the addressee is strictly prohibited

Airton Road, Tallaght, Dublin 24

| Operati  | ional Was   | ste & Recycling Management Plan                          | Traynor International Int., |
|----------|-------------|----------------------------------------------------------|-----------------------------|
|          | EXEC        | UTIVE SUMMARY                                            | 4                           |
| 1.0      | INTRO       | DDUCTION                                                 | 5                           |
| 2.0      | LEGIS       | LATION PLANNING POLICY                                   | 7                           |
|          | 2.1         | National Legislation                                     | 7                           |
|          | 2.2         | Regional Level                                           | 8                           |
|          | 2.3         | Legislative Requirements                                 | 10                          |
|          | 2.4         | Responsibility of the Waste Producer                     | 11                          |
|          | 2.5         | South Dublin County Council Be-Laws 2018                 | 11                          |
|          | 2.6         | Regional Waste Management Service Providers & Facilities | 12                          |
|          | 2.7         | Policy Context                                           | 13                          |
| 3.0      | DESC        | RIPTION OF THE PROJECT                                   | 14                          |
|          | 3.1         | Location, Size and Scale of the Development              | 14                          |
|          | 3.2         | Typical Waste Categories                                 | 15                          |
|          | 3.3         | European Waste Codes                                     | 15                          |
|          | 3.4         | Methodology                                              | 17                          |
| 4.0      | ESTIN       | IATED WASTE ARISING                                      | 18                          |
|          | 4.1         | Waste Storage & Collection                               | 19                          |
|          | 4.2         | Waste Storage – Residential                              | 20                          |
|          | 4.3         | Waste Collection                                         | 27                          |
|          | 4.4         | Unique Waste                                             | 27                          |
|          | 4.5         | Waste Storage Area Design                                | 28                          |
| 5.0      | WAST        | TE COLLECTION REQUIREMENTS                               | 29                          |
|          | 5.1         | South Dublin County Council Bye Laws 2018                | 29                          |
|          | 5.2         | BS 5906:2005                                             | 29                          |
| 6.0      | CONC        | LUSION                                                   | 31                          |
| Airton R | oad, Tallaį | ght, Dublin 24                                           | 3                           |



#### EXECUTIVE SUMMARY

Traynor Environmental Ltd has been appointed by Greenleaf Homes Ltd. (hereafter referred to as the 'Applicant') to prepare an Operational Waste and Recycling Management Plan (OWRMP) (hereafter referred to as the 'Strategy') in support of the proposed development at Airton Road, Tallaght, Dublin 24 (hereafter referred to as the 'Proposed Development') located within the administrative boundary of South Dublin County Council.

#### The proposed Development consists of:

The proposed mixed-use residential development will consist of 502 No. residential apartment units in 6 no. multistorey blocks. Parking is provided at under croft level within blocks A/B/C and at basement level in blocks E/F.

The principal aim of this Strategy is to demonstrate how the Proposed Development has taken into account sustainable methods for waste and recycling management during its operation. Furthermore, with regards to waste and recycling management within the Proposed Development, this Strategy has the following aims:

- To contribute towards achieving current and long-term government targets, Eastern Midlands Region (EMR), South Dublin County Council for waste minimisation, recycling and re-use;
- To comply with all applicable legal requirements for handling, storage and collection of operational waste;
- To achieve high standards of waste management performance, through giving (and continuing to give) due consideration to the waste generated by the Proposed Development during its operation; and
- To provide the Proposed Development with a convenient, clean and efficient waste management strategy that enhances the operation of the Proposed Development and promotes recycling.

Once operational, the Proposed Development is anticipated to produce approximately 90,222L of waste from all land uses per week. Of this total, 81,136L will be generated by the residential elements and 9,086L will be generated by the commercial/communal/creche elements. Residential waste storage allows for a weekly (seven day) storage capacity for MDR, food, glass and residual (i.e. nonrecyclable). Residential bins will be provided within dedicated storage rooms within the core of each residential block. On the day of collection, bins from the waste storage areas will be brought to the collection point where all bins will be emptied by the approved waste collector. Once emptied the bins will be returned back to the appropriate waste storage areas.

In particular this OWRMP aims to provide a robust strategy for storing, handling, collection and transport of the wastes generated at site. Additionally, all waste infrastructure introduced to the Development will comply with South Dublin County Council's requirements, British Standard 5906:2005 (Waste Management in Buildings Code of Practice) and DoEHLG, Sustainable Urban Housing: Design Standards for New Apartments, Guidelines for Planning Authorities (2018).

Airton Road, Tallaght, Dublin 24



#### 1.0 INTRODUCTION

This Operational Waste and Recycling Management Plan (the 'Strategy') has been prepared by Nevin Traynor BSc.Env, HDIP IT, Cert SHWW, IAH of Traynor Environmental Ltd on behalf of Greenleaf Homes Ltd ('The Applicant') in support of the proposed mixed-use residential development at Airton Road, Tallaght, Dublin 24 (hereafter referred to as the 'Proposed Development') within the South Dublin County Council responsibility.

The principal aim of this Strategy is to demonstrate how the Proposed Development has taken into account sustainable methods for waste and recycling management during its operation. Furthermore, with regards to waste and recycling management within the Proposed Development, this Strategy has the following aims:

- To contribute towards achieving current and long-term government, Eastern Midlands Region (EMR) and South Dublin County Council targets for waste minimisation, recycling and re-use;
- To comply with all legal requirements for handling operational waste;
- To achieve high standards of waste management performance, through giving (and continuing to give) due consideration to the waste generated by the Proposed Development during its operation; and
- To provide the Proposed Development with a convenient, clean and efficient waste management strategy that enhances the operation of the Proposed Development and promotes recycling.

South Dublin County Council is part of the Eastern Midlands Waste Management Region. The Eastern Midlands Waste Management Region comprises of Dublin City Council, Dun Laoghaire – Rathdown, Fingal, South Dublin, Kildare, Louth, Laois, Longford, Meath, Offaly, Westmeath and Wicklow County Council.

This Strategy provides a review of the requirements placed upon the Proposed Development under national legislation and implemented policy at all levels of government (i.e. national (Ireland), regional (EMR), district and local (South Dublin County Council). Consideration has also been given to requirements included in local standards and guidance documents (i.e. DoEHLG, Sustainable Urban Housing: Design Standards for New Apartments, Guidelines for Planning Authorities (2018) in line with the Regional Waste Management Plan and British Standard Waste Management in Buildings, Code of Practice (BS 5906:2005) so as to comply with relevant objectives and targets.

Estimate volumes of waste generated during operation of the Proposed Development have been provided in the report which also includes a breakdown of the waste management process, which details waste handling, storage area provision, and collection arrangements. All waste reduction measures are compliant with BS 5906:2005, Eastern Midlands Region (EMR) and Sustainable Urban Housing: Design Standards for New Apartments which are also discussed in this strategy.

#### Operational Waste & Recycling Management Plan



Figure No. 1 Site Layout



7

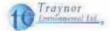
#### 2.0 LEGISLATION/ PLANNING POLICY

A summary of national regional and local planning policy relevant to the Proposed Development is outlined in section 2.1 below. It should be noted that this summary identifies those elements of the policy or guidance applicable to waste management within the Proposed Development.

#### 2.1 National Legislation

The Government issued a policy statement in September 1998 titled as 'Changing Our Ways' which identified objectives for the prevention, minimisation, reuse, recycling, recovery and disposal of waste in Ireland. A heavy emphasis was placed on reducing reliance on landfill and finding alternative methods for managing waste. Amongst other things, Changing Our Ways stated a target of at least 35% recycling of municipal (i.e. household, commercial and non-process industrial) waste.

A further policy document 'Preventing and Recycling Waste – Delivering Change' was published in 2002. This document proposed a number of programmes to increase recycling of waste and allow diversion from landfill. The need for waste minimisation at source was considered a priority.


This view was also supported by a review of sustainable development policy in Ireland and achievements to date, which was conducted in 2002, entitled 'Making Irelands Development Sustainable – Review, Assessment and Future Action'. This document also stressed the need to break the link between economic growth and waste generation, again through waste minimisation and reuse of discarded material.

In order to establish the progress of the Government policy document *Changing Our Ways*, a review document was published in April 2004 entitled *'Taking Stock and Moving Forward'*. Covering the period 1998 – 2003, the aim of this document was to assess progress to date with regard to waste management in Ireland, to consider developments since the policy framework and the local authority waste management plans were put in place, and to identify measures that could be undertaken to further support progress towards the objectives outlined in *Changing Our Ways*.

In particular, *Taking Stock and Moving Forward* noted a significant increase in the amount of waste being brought to local authority landfills. The report noted that one of the significant challenges in the coming years was the extension of the dry recyclable collection services. The most recent policy document was published in July 2012 titled '*A Resource Opportunity*. The policy document stresses the environmental and economic benefits of better waste management, particularly in relation to waste prevention. The document sets out several actions, including the following:

- A move away from landfill and replacement through prevention, reuse, recycling and recovery.
- A Brown Bin roll-out diverting 'organic waste' towards more productive uses.

#### **Operational Waste & Recycling Management Plan**



- Introducing a new regulatory regime for the existing side-by-side competition model within the household waste collection market;
- New Service Standards to ensure that consumers receive higher customer service standards from their operator:
- Placing responsibility on householders to prove they use an authorised waste collection service.
- The establishment of a team of Waste Enforcement Officers for cases relating to serious criminal activity will be prioritised;
- A review of the producer responsibility model will be initiated to assess and evaluate the operation of the model in Ireland;
- Significant reduction of Waste Management Planning Regions from ten to three.

While a *resource opportunity* covers the period to 2020, it is subject to a mid-term review in 2016 to ensure that the measures are set out properly and to provide an opportunity for additional measures to be adopted in the event of inadequate performance. Since 1998, the Environmental Protection Agency (EPA) has produced periodic '*National Waste (Database) Reports*' detailing among other things estimates for household and commercial (municipal) waste generation in Ireland and the level of recycling, recovery and disposal of these materials. The 2018 National Waste Statistics, which is the most recent study published, reported the following key statistics for 2016:

- 2,763 kilotonnes of municipal waste was managed in 2016 (6% increase compared to 2014).
- 74% of managed municipal waste was recovered (79% in 2014). Recovery includes treatment processes such as recycling, use as a fuel (incineration and co-incineration) and backfilling.
- 41% of managed municipal waste was recycled (41% in 2014). Recycling includes reprocessing of waste materials into products, composting and anaerobic digestion.
- 26% of managed municipal waste was landfilled in 2016.

#### 2.2 Regional Level

The proposed development is located in the Local Authority area of South Dublin County Council. The *EMR Waste Management Plan 2015 – 2021* is the regional waste management plan for the SDCC area which was published in May 2015. This plan replaces the previous Dublin region plan due to changing National policy as set out in *A Resource Opportunity: Waste Management Policy in Ireland* and changes being enacted by the *Waste Framework Directive* (2008/98/EC).

The regional plan sets out the following strategic targets for waste management in the region:

• A 1% reduction per annum in the quantity of household waste generated per capita over the period of the plan;

Airton Road, Tallaght, Dublin 24



9

- Achieve a recycling rate of 50% of managed municipal waste by 2020; and
- Reduce to 0% the direct disposal of unprocessed residual municipal waste to landfill (from 2016 onwards) in favour of higher value pre-treatment processes and indigenous recovery practices.

Municipal landfill charges in Ireland are based on the weight of waste disposed. In the Leinster Region, charges are approximately  $\leq 130 - \leq 150$  per tonne of waste which includes a  $\leq 75$  per tonne landfill levy. The *South Dublin County Council Development Plan 2016 – 2022* sets out a number of objectives and actions for the South Dublin area in line with the objectives of the waste management plan.

Waste objectives and actions with a particular relevance to this development are:

- IES Objective 1: To support the implementation of the Eastern–Midlands Region Waste Management Plan 2015-2021 by adhering to overarching performance targets, policies and policy actions.
- IES Objective 2: To support waste prevention through behavioural change activities to de-couple economic growth and resource use.
- IES Objective 3: To encourage the transition from a waste management economy to a green circular economy to enhance employment and increase the vale recovery and recirculation of resources.
- IES Objective 4: To provide, promote and facilitate high quality sustainable waste recovery and disposal
  infrastructure / technology in keeping with the EU waste hierarchy and to adequately cater for a growing
  residential population and business sector.
- IES Objective 5: To provide and maintain the network of bring infrastructure (e.g. civic amenity facilities, bring banks) in the county to facilitate the recycling and recovery of hazardous and non – hazardous municipal wastes.
- *IES Objective 6:* To seek the provision of adequately sized public recycling facilities in association with new commercial developments and in tandem with significant change of use / extensions of existing commercial developments where appropriate.
- IE5 Objective 7: To develop a countrywide network of green waste centres in suitable locations to expand the collection system for compostable waste.
- IES Objective 8: To secure appropriate provision for the sustainable management of waste within
  developments, including the provision of facilities for the storage, separation and collection of such waste.

#### Actions:

Support and facilitate the separation of waste at source into organic and non-organic streams or other waste
management systems that divert waste from landfill and maximise the potential for each waste type to be reused and recycled or composted and divert organic waste from landfill, in accordance with the National Strategy
on Biodegradable Waste (2006).

#### Operational Waste & Recycling Management Plan



- Implement the objectives of the National Waste Prevention Programme at a local level with businesses, schools, householders, community groups and within the Council's own activities.
- Promote an increase in the amount of waste re-used and recycled consistent with the Regional Waste Management Plan

and Waste Hierarchy and facilitate recycling of waste through adequate provision of facilities and good design in new developments.

Implement the South Dublin Litter Management Plan 2015 – 2019.

#### 2.3 Legislative Requirements

The primary legislative instruments that govern waste management in Ireland and applicable to the project are:

Waste Management Act 1996 (No. 10 of 1996) as amended and associated legislation includes:

- Environmental Protection Act 1992 (S.I. No. 7 of 1992) as amended by the Protection of the Environment Act 2003 (S.I. No. 27 and S.I. No. 413 of 2003) and amended by the Planning and Development Act 2000 (S.I. No. 30 of 2000) as amended;
- Litter Pollution Act 1997 (Act No. 12 of 1997) as amended by the Litter Pollution Regulations 1999 (S.I. No. 359 of 1999) and Protection of the Environment Act 2003;
- European Communities (Transfrontier Shipment of Waste) Regulations, 1994 (S.I. No. 221 of 1994);
- European Union (Properties of Waste Which Render it Hazardous) Regulations 2015 (S.I. No. 233 of 2015);
- Waste Management (Licensing) Regulations 2000 (S.I No. 185 of 2000) as amended 2004 (S.I. No. 395 of 2004) and 2010 (S.I. No. 350 of 2010);
- European Union (Packaging) Regulations 2014 (S.I. No. 282 of 2014);
- Waste Management (Planning) Regulations 1997 (S.I. No. 137 of 1997);
- Waste Management (Landfill Levy) Regulations 2015 (S.I. No. 189 of 2015);
- European Communities (Waste Electrical and Electronic Equipment) Regulations 2014 (S.I. No. 149 of 2014);
- European Communities (Waste Directive) Regulations 2011 (S.I. No. 126 of 2011) as amended 2011 and 2016 (S.I. No. 323 of 2011);
- Waste Management (Collection Permit) Regulations 2007 (S.I. No. 820 of 2007) as amended 2008 (S.I. No 87 of 2008) and 2016 (S.I. 24 of 2016);
- Waste Management (Facility Permit and Registration) Regulation 2007 (S.I No. 821 of 2007) as amended 2008 (S.I No. 86 of 2008), 2014 (S.I. No. 310 and S.I. No. 546 of 2014) and 2015 (S.I. No. 198 of 2015);



- Waste Management (Batteries and Accumulators) Regulations 2014 (S.I. No. 283 of 2014) as amended 2014 (S.I. No. 349 of 2014) and 2015 (S.I. No. 347 of 2015);
- Waste Management (Food Waste) Regulations 2009 (S.I. No. 508 of 2009) as amended 2015 (S.I. No. 190 of 2015);
- European Union (Household Food Waste and Bio-waste) Regulations 2015 (S.I. No. 191 of 2015);
- Waste Management (Hazardous Waste) Regulations 1998 (S.I. No. 163 of 1998) as amended 2000 (S.I. No. 73 of 2000); and
- Waste Management (Shipments of Waste) Regulations 2007 (S.I. No. 419 of 2007) as amended by European Communities (Shipments of Hazardous Waste exclusively within Ireland) Regulations 2011 (S.I. No. 324 of 2011)

#### 2.4 Responsibilities of the Waste Producer.

The waste producer is responsible for waste from the time it is generated through until its legal disposal (including its method of disposal.) Waste contractors will be employed to physically transport waste to the final waste disposal / recovery site. It is therefore critical that the residents and the proposed management company undertake on-site management of waste in accordance with all legal requirements and employ suitably permitted/licenced contractors to undertake off-site management of their waste in accordance with all legal requirements. This includes the requirement that a waste contactor handle, transport and reuse/recover/recycle/dispose of waste in a manner that ensures that no adverse environmental impacts occur as a result of any of these activities. A collection permit to transport waste must be held by each waste contractor which is issued by the National Waste Collection Permit Office (NWCPO). Waste receiving facilities must also be appropriately permitted or licensed. Operators of such facilities cannot receive any waste, unless in possession of a Certificate of Registration (COR) or waste permit granted by the relevant Local Authority under the *Waste Management (Facility Permit & Registration) Regulations 2007* as amended or a waste or IED (Industrial Emissions Directive) licence granted by the EPA. The COR/permit/licence held will specify the type and quantity of waste able to be received, stored, sorted, recycled, recovered and/or disposed of at the specified site.

#### 2.5 South Dublin County Council Bye-Laws 2018

These Bye-Laws for the Segregation, Storage and Presentation of Household and Commercial Waste were designed to repeal South Dublin County Council Household Waste Bye-Laws 2012 and South Dublin County Council (Storage, separation at source, presentation and collection of commercial waste) Bye-Laws 2007. The Bye-Laws commenced on the 3<sup>rd</sup> December 2018 and place legal obligations on the waste producer in terms of the way waste is stored and managed on a site/premises. Dry recyclables must be segregated at source, and bio-waste (organic) must be segregated if a collection service is available. Waste must be presented in approved containers that are kept in a reasonable state and only presented for collection in approved areas and times by the Council. Key requirements under these bye-laws are:

- Kerbside waste presented for collection shall not be presented for collection earlier than 8.00pm on the day Airton Road, Tallaght, Dublin 24  $$1\!\!1$ 

#### **Operational Waste & Recycling Management Plan**



immediately preceding the designated waste collection day;

- All containers used for the presentation of kerbside waste and any uncollected waste shall be removed from any roadway, footway, footpath or any other public place no later than 8:00am on the day following the designated waste collection day;
- Neither recyclable household kerbside waste nor food waste arising from households shall be contaminated with any other type of waste before or after it has been segregated; and
- A management company, or another person if there is no such company, who exercises control and supervision
  of residential and/or commercial activities in multi-unit developments, mixed-use developments, flats or
  apartment blocks, combined living/working spaces or other similar complexes shall ensure that: o separate
  receptacles of adequate size and number are provided for the proper segregation, storage and collection of
  recyclable household kerbside waste and residual household kerbside waste;
- additional receptacles are provided for the segregation, storage and collection of food waste where this
  practice is a requirement of the national legislation on food waste;
- the receptacles referred to in paragraphs (a) and (b) are located both within any individual apartment and at the place where waste is stored prior to its collection;
- any place where waste is to be stored prior to collection is secure, accessible at all times by tenants and other occupiers and is not accessible by any other person other than an authorised waste collector,
- written information is provided to each tenant or other occupier about the arrangements for waste separation, segregation, storage and presentation prior to collection;
- an authorised waste collector is engaged to service the receptacles referred to in this section of these byelaws, with documentary evidence, such as receipts, statements or other proof of payment, demonstrating the existence of this engagement being retained for a period of no less than two years. Such evidence shall be presented to an authorised person within a time specified in a written request from either that person or from another authorised person employed by South Dublin County Council; and
- receptacles for kerbside waste are presented for collection on the designated waste collection day.

#### 2.6 Regional Waste Management Service Providers & Facilities

Various contractors offer waste collection services for the residential sector in the South Dublin County Council. Details of waste collection permits (granted, pending and withdrawn) for the region are available from the NWCPO. There are a number of other licensed and permitted facilities in operation in the region including waste transfer stations, hazardous waste facilities and integrated waste management facilities. There are two existing thermal treatment facilities, one in Duleek, Co. Meath and a second facility in Poolbeg in Dublin. A copy of all CORs and waste permits issued by the Local Authorities are available from the NWCPO website and all waste/IED licenses issued are available from the EPA.

### Traynor Inchangement List

#### 2.7 Policy Context

Development Plan Policy generally sets out guidelines for waste management which conform to the European Union and National Waste Management Hierarchy as follows:

dis-ups

- Waste Prevention
- Minimisation
- Re-use
- Waste Recycling
- Energy Recovery
- Disposal

This guidance is subject to economic and technical feasibility. Council's Waste Management Strategy is firmly grounded in EU and National policy and can be summarised by the waste hierarchy of prevention, recycling, energy recovery and disposal.

Operational Waste & Recycling Management Plan



#### 3.0 DESCRIPTION OF THE PROJECT

#### 3.1 Location, Size and Scale of the Development

The proposed site is located at the corner of Airton road and Greenhills road, Tallaght, Dublin 24. The proposed mixeduse residential development will consist of 502 No. residential apartment units in 6no. multi-storey blocks. Parking is provided at under croft level within blocks A/B/C and at basement level in blocks E/F. The total number of car parking spaces provided is 202. At ground floor level of Blocks C and D, there are 3 no. retail units with a combined area of 482sq.m.

|       |       | Total |       |       |
|-------|-------|-------|-------|-------|
| Block | 1-Bed | 2-Bed | 3-Bed | Units |
| А     | 38    | 49    | 1     | 88    |
| в     | 53    | 36    | 5     | 94    |
| с     | 39    | 47    | 7     | 93    |
| D     | 36    | 56    | 15    | 107   |
| E-F   | 31    | 69    | 20    | 120   |
| Total | 197   | 257   | 48    | 502   |

Table 1.0 Mixed Use Residential Development

| Non-Residential Floor Areas | Location  | Area (sq.m) |
|-----------------------------|-----------|-------------|
| Communal Facilities         | Block C   | 465         |
| Communal Facilities         | Block D   | 93          |
| Communal Facilities         | Block E-F | 146         |
| Creche (44 Children)        | Block C   | 329         |
| Retail Unit                 | Block C   | 187         |
| Retail Unit                 | Block D   | 161         |
| Retail Unit                 | Block D   | 134         |
| Total                       |           | 1,515       |

Table 2.0 Mixed Development Details Non-Residential Floor Areas



#### 3.2 Typical Waste Categories

The predicted waste types that will be generated at the proposed development include the following:

- Dry Mixed Recyclables (DMR) includes Newspaper / General paper Magazines, Cardboard Packaging, Drink (Aluminum) Cans, Washed Food (Steel/Tin) Cans, Washed Tetra Pak Milk & Juice Cartons, Plastic Bottles (Mineral/Milk/Juice/Shampoo/Detergents), Rigid Plastics. (Pots/Tubs/Trays\*)
- Mixed Non-Recyclables (MNR) / All General Waste Nappies, soiled food, packaging, old candles, plasters, vacuum cleaner contents, broken delph, contaminated plastics
- Organic (food) Waste Leaves, weeds and mosses (not sprayed with weed killer), Dead plants and flowers, Grass and hedge cuttings (finger sized twigs), Bread, pasta and rice, Meat, fish, poultry bones, Out of date food (no plastic packaging), Tea Bags, Coffee grounds and paper filters. Fruit and vegetables (cooked and uncooked).
   Food soiled cardboard or paper (no coated paper) Eggs and dairy products (no plastic packaging) Paper napkin and paper towels
- Glass

In addition to the typical waste materials that will be generated on a daily basis, there will be some additional waste types generated in small quantities that will need to be managed separately including:

- Textiles;
- Batteries;
- Waste electrical and electronic equipment (WEEE);
- Chemicals (solvents, pesticides, paints, adhesives, resins, detergents, etc.);
- Fluorescent tubes and other mercury containing waste;
- Furniture (and from time to time other bulky wastes).

Wastes should be segregated into the above waste types to ensure compliance with waste legislation and guidance while maximising the re-use, recycling and recovery of waste with diversion from landfill wherever possible.

#### 3.3 European Waste Codes

In 1994, the European Waste Catalogue and Hazardous Waste List were published by the European Commission. In 2002, the EPA published a document titled the European Waste Catalogue and Hazardous Waste List, which was a condensed version of the original two documents and their subsequent amendments. This document has been replaced by the EPA 'Waste Classification – List of Waste & Determining if Waste is Hazardous or Non-Hazardous' which became valid from the 1st June 2015. This waste classification system applies across the EU and is the basis for all national and international waste reporting, such as those associated with waste collection permits, COR's, permits and licences and EPA National Waste Database.

#### Operational Waste & Recycling Management Plan



Under the classification system, different types of wastes are fully defined by a code. The List of Waste (LoW) code (also referred to as European Waste Code or EWC) for typical waste materials expected to be generated during the operation of the proposed development is provided in the Table below.

| Waste Material                                                               | LoW Code                       |
|------------------------------------------------------------------------------|--------------------------------|
| Paper and Cardboard                                                          | 20 01 01                       |
| Plastic                                                                      | 20 01 39                       |
| Metals                                                                       | 20 01 40                       |
| Mixed Municipal Waste                                                        | 20 03 01                       |
| Glass                                                                        | 20 01 02                       |
| Biodegradable Kitchen Waste                                                  | 20 01 08                       |
| Biodegradable garden and park waste                                          | 20 02 01                       |
| Textiles                                                                     | 20 01 11                       |
| Batteries and accumulators*                                                  | 20 01 33-34                    |
| Waste electrical and electronic equipment*                                   | 20 01 35-36                    |
| Chemicals (solvents, pesticides, paints & adhesives, detergents etc) $^{st}$ | 20 01 13 / 20 0119 / 20 0127 / |
|                                                                              | 20 01 28 /20 01 29 / 20 01 30  |
| Fluorescent tubes and other mercury containing waste $^{*}$                  | 20 01 21                       |
| Bulky wastes                                                                 | 20 03 07                       |

Table 3.0 Typical Waste Types Generated and LoW Codes



#### 3.4 Methodology

#### 3.4.1 Residential Calculation Methodology

Waste arisings were calculated in accordance with BS 5906:2005 and included a provision of 5 litres (L) of food waste per residential unit per week. These guidelines determine the minimum capacity for waste storage space to be allocated and are as follows:

- 30 litres (L) per unit + 70L per bedroom (see Table 4 for further details);
- Split 50:50 between
- MDR and residual waste; and
- 5L per residential unit for food waste.

| Number of  | Weekly Waste Arisings per Unit (L) |            |                |       |  |  |
|------------|------------------------------------|------------|----------------|-------|--|--|
| Bedrooms   | MDR                                | Food Waste | Residual Waste | Total |  |  |
| 1 Bedroom  | 50                                 | 5          | 50             | 105   |  |  |
| 2 Bedrooms | 85                                 | 5          | 85             | 175   |  |  |
| 3 Bedrooms | 120                                | 5          | 120            | 245   |  |  |

Table 4.0 Weekly Waste Arisings Methodology

#### 3.4.2 Commercial Calculation Methodology

BS 5906:2005 provides a methodology for the calculation of waste arisings from creches, communal areas and retail. These calculation methodologies are outlined within Table 5 of this Strategy. A 50:50 split between MDR and residual waste has been assumed for the creche, retail land uses and community space.

| Land Use Class             | Waste Storage Requirements                    | Waste Stream Ratios |
|----------------------------|-----------------------------------------------|---------------------|
| A: Retail                  | 10L per m <sup>2</sup> Sales Floor Area (SFA) | MDR: Residual Waste |
| A. Netali                  | TOE PET ITT Sales FIOOF AFEA (SFA)            | 50: 50              |
| D: Creche                  | 10L per m <sup>2</sup> NIA                    | 50: 50              |
| D. Creche                  |                                               | MDR: Residual       |
| D, E-F – Communal Facility | 5L per m <sup>2</sup> NIA                     | 50: 50              |
| D, E-F – Communal Facility | SE per mi MIA                                 | MDR: Residual       |

 Table 5.0
 Commercial Waste Arising Calculations (Weekly)

#### Operational Waste & Recycling Management Plan



#### 4.0 ESTIMATED WASTE ARISINGS

The estimated quantum/volume of waste that will be generated from the units has been determined based on the predicted occupancy of the units and is presented in Table 6 and Table 7 below.

|                             | Waste Volume (L/week) |         |         |         |           |        |
|-----------------------------|-----------------------|---------|---------|---------|-----------|--------|
| Waste type                  | Block A               | Block B | Block C | Block D | Block E-F | Totals |
| Organic<br>Waste            | 440                   | 470     | 465     | 535     | 600       | 2,510  |
| Mixed Dry<br>Recyclables    | 6920                  | 6870    | 6785    | 8465    | 10025     | 39,065 |
| Mixed<br>Municipal<br>Waste | 6920                  | 6870    | 6785    | 8465    | 10025     | 39,065 |
| Glass                       | 85                    | 95      | 92      | 105     | 119       | 496    |
| Total                       | 14,365                | 14,305  | 14,127  | 17,570  | 20,769    | 81,136 |

Table 6 Residential Waste Prediction (L/per week)

| Non-<br>Residential<br>Floor Areas | Location  | Area (sq.) | Area<br>(NIA) | MDR      | Food<br>Waste | Residual<br>Waste | Glass | Total   |
|------------------------------------|-----------|------------|---------------|----------|---------------|-------------------|-------|---------|
| Communal<br>Facilities             | Block C   | 465        | 357.28        | 893.2    | 10            | 893.2             | 5     | 1801.4  |
| Communal<br>Facilities             | Block D   | 93         | 70.84         | 177.1    | 5             | 177.1             | 5     | 364.2   |
| Communal<br>Facilities             | Block E-F | 146        | 111.65        | 279.1    | 8             | 279.1             | 5     | 571.2   |
| Creche (44<br>Children)            | Block C   | 329        | 254.1         | 1,270.5  | 50            | 1,270.5           | 10    | 2601    |
| Retail Unit                        | Block C   | 187        | 143.99        | 719.95   | 10            | 719.95            | 5     | 1454.9  |
| Retail Unit                        | Block D   | 161        | 123.97        | 619.85   | 10            | 619.85            | 5     | 1254.7  |
| Retail Unit                        | Block D   | 134        | 102.41        | 512.05   | 10            | 512.05            | 5     | 1039.1  |
| Total                              |           | 1,515      | 1,164.24      | 4,471.75 | 103           | 4,471.75          | 40    | 9,086.5 |

Table 7 Commercial/Creche/Communal Waste Predictions (L/per week) Airton Road, Tallaght, Dublin 24



#### 4.1 Waste Storage and Collection

This section provides information on how waste generated within the development will be stored and how the waste will be collected from the development. This has been prepared with due consideration of the proposed site layout as well as best practice standards, local and national waste management requirements including those of SDCC. In particular, consideration has been given to the following documents:

- BS 5906:2005 Waste Management in Buildings Code of Practice;
- EMR Waste Management Plan 2015 2021;
- South Dublin County Council, Bye-Laws 2018;
- DoEHLG, Sustainable Urban Housing: Design Standards for New Apartments, Guidelines for Planning Authorities (2018).

It is required that space be provided for recycling bins to accommodate 50% of the total weekly volume. This is in line with the BS5906:2005 requirements. Residual waste (MNR) is required for 87.5% of the total weekly arising. For the purpose of the strategy Glass and Organic Waste is required for 87.5% of the total weekly arising.

| Block | Number of Bins Required for a Weekly Collection |           |            |           |  |
|-------|-------------------------------------------------|-----------|------------|-----------|--|
| DIOCK | MNR                                             | Organic   | DMR        | Glass     |  |
| A     | 6 x 1100L                                       | 2 x 240L  | 3 x 1100L  | 2 x 240L  |  |
| В     | 6 x 1100L                                       | 2 x 240L  | 4 x 1100L  | 2 x 240L  |  |
| С     | 5 x 1100L                                       | 2 x 240L  | 3 x 1100L  | 2 x 240L  |  |
| D     | 7 x 1100L                                       | 2 x 240L  | 4 x 1100L  | 2 x 240L  |  |
| E & F | 10 x 1100L                                      | 2 x 240L  | 6 x 1100L  | 2 x 240L  |  |
| Total | 34 x 1100L                                      | 10 x 240L | 20 x 1100L | 10 x 240L |  |

 Table 8: Total Bins Required for the Proposed Development.

| Block                   | Number of Bins Required for a Weekly Collection |          |           |          |  |  |
|-------------------------|-------------------------------------------------|----------|-----------|----------|--|--|
|                         | MNR                                             | Organic  | DMR       | Glass    |  |  |
| Retail (Block C)        | 1 x 1100L                                       | 1 x 240L | 1 x 1100L | 1 x 240L |  |  |
| Retail Unit 1 (Block D) | 1 x 1100L                                       | 1 x 240L | 1 x 1100L | 1 x 240L |  |  |
| Retail Unit 2 (Block D) | 1 x 1100L                                       | 1 x 240L | 1 x 1100L | 1 x 240L |  |  |
| Total                   | 3 x 1100L                                       | 3 x 240L | 3 x 1100L | 3 x 240L |  |  |

Table 9: Total Bins Required for Retail

#### Operational Waste & Recycling Management Plan



| Block            | Number of Bins Required for a Weekly Collection |          |           |          |
|------------------|-------------------------------------------------|----------|-----------|----------|
|                  | MNR                                             | Organic  | DMR       | Glass    |
| Creche (Block C) | 2 x 1100L                                       | 2 x 240L | 1 x 1100L | 1 x 240L |

Table 10: Total Bins Required for Creche

| Block                         | Number of Bins Required for a Weekly Collection |          |           |          |  |
|-------------------------------|-------------------------------------------------|----------|-----------|----------|--|
|                               | MNR                                             | Organic  | DMR       | Glass    |  |
| Communal Facilities Block C   | 1 x 1100L                                       | 1 x 240L | 1 x 1100L | 1 x 240L |  |
| Communal Facilities Block D   | 1 x 240L                                        | 1 x 240L | 1 x 240L  | 1 x 240L |  |
| Communal Facilities Block E-F | 1 x 1100L                                       | 1 x 240L | 1 x 1100L | 1 x 240L |  |

 Table 11:
 Total Bins Required for Communal



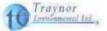
21

#### 4.2 Waste Storage Residential Units

#### 4.2.1 Block A

Residents will be expected to take all waste arisings from their units to the appropriate residential waste storage area. Residents will be required to segregate their waste into the following waste categories within their own apartment units:

- DMR;
- MNR;
- Organic waste; and
- Glass.


The proposed Waste Storage Areas for Block A are located on the northern and southern wing as per Figure 1.0. Each WSA is titled "Bin Store". It is recommended that all WSAs should have secure access with either key or fob to ensure only residents may place waste in the respective WSA in Block A.

#### Figure 1.0 Waste Storage Area (Block A)



Airton Road, Tallaght, Dublin 24

#### Operational Waste & Recycling Management Plan



#### 4.2.2 Block B

Residents will be expected to take all waste arisings from their units to the appropriate residential waste storage area. Residents will be required to segregate their waste into the following waste categories within their own apartment units:

- DMR;
- MNR;
- Organic waste; and
- Glass.

The proposed Waste Storage Areas are located on the northern wing of the main Block B as per Figure 2.0. It is recommended that all WSAs should have secure access with either key or fob to ensure only residents may place waste in the respective WSA in Block B.

#### Figure 2.0 Waste Storage Block B





#### 4.2.3 Block C

Residents will be expected to take all waste arisings from their units to the appropriate residential waste storage area. Residents will be required to segregate their waste into the following waste categories within their own apartment units:

- DMR;
- MNR;
- Organic waste; and
- Glass.

The proposed Waste Storage Area is located as per Figure 3.0. It is recommended that all WSA should have secure access with either key or fob to ensure only residents may place waste in the respective WSA in Block C.

### Figure 3.0 Waste Storage Block C



#### Operational Waste & Recycling Management Plan



#### 4.2.4 Block D

Residents will be expected to take all waste arisings from their units to the appropriate residential waste storage area. Residents will be required to segregate their waste into the following waste categories within their own apartment units:

- DMR;
- MNR;
- Organic waste; and
- Glass.

The proposed Waste Storage Areas are located as per Figure 4.0. It is recommended that all WSAs should have secure access with either key or fob to ensure only residents may place waste in the respective WSA in Block D. It is recommended that all WSAs should have secure access with either key or fob to ensure only residents may place waste in the respective WSA in Block D.

Figure 4.0 Waste Storage Block D



Airton Road, Tallaght, Dublin 24

23



#### 4.2.5 Block E & F

Residents will be expected to take all waste arisings from their units to the appropriate residential waste storage area. Residents will be required to segregate their waste into the following waste categories within their own apartment units:

- DMR;
- MNR;
- Organic waste; and
- Glass.

The proposed Waste Storage Areas are located in the basement level in Block E & F as per Figure 5.0. Residents will use the stairs/lift to access the basement level. It is recommended that all WSAs should have secure access with either key or fob to ensure only residents may place waste in the respective WSA in Block E & F.

#### Figure 5.0 Waste Storage Block E & F



#### Operational Waste & Recycling Management Plan



#### 4.2.6 Waste Storage – Creche/Retail Units/Communal Spaces

The creche/Retail units/communal spaces will be required to segregate their waste into the following waste categories within their own unit:

- DMR;
- MNR;
- Organic waste; and
- Glass

As required, the staff will need to bring segregated DMR, MNR, Organic and Glass waste to the dedicated WSA.

Bins will be strategically located throughout the retail units. It is proposed that each retail unit will have separate waste storage for each unit. As required, the tenants will segregate DMR, MNR, Glass and Organic waste within their own unit. If there is a café/restaurant tenant, organic waste from kitchen areas should be collected in bins as close to food preparation as possible.

All bin/containers should will be clearly labelled, and colour coded to avoid cross contamination of the different waste streams. Signage should be posted on or above the bins to show which wastes can be put in each bin. Suppliers for the retail/non-retail/commercial units should be requested by the tenants to make deliveries in reusable containers, minimize packaging or to remove any packaging after delivery where possible, to reduce waste generated by the development.

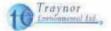
Waste materials such as batteries, WEEE and printer toner/cartridges may be generated within the units, but it is anticipated that they will be generated infrequently (if they do arise). Temporary storage areas may be identified within the units for these items pending collection by an authorised waste contractor.

Airton Road, Tallaght, Dublin 24



#### 4.3 Waste Collection

There are numerous private contractors that provide waste collection services in the Airton road area who hold a valid waste collection permit for the specific waste types collected. All waste collected must be transported to registered/permitted/licensed facilities only.


All waste requiring collection by the appointed waste contractor will be collected from the WSAs by nominated waste contractors or facilities management depending on the agreement and will be brought to the temporary waste collection area located on North East Road. The empty bins will be promptly returned to the appropriate WSAs.

All waste receptacles presented for collection will be clearly identified as required by waste legislation and the requirements of the SDCC Waste Byelaws. Also, waste will be presented for collection in a manner that will not endanger health, create a risk to traffic, harm the environment or create a nuisance through odours or litter.

#### 4.4 Unique Waste

There is likely to be a small component of the overall waste arisings from the Proposed Development that will comprise other waste streams, such as WEEE, printer and toner cartridges, and fluorescent light tubes. Building maintenance will also give rise to materials such as paints and waste lubricating oils, which will require separate storage in dedicated sealed containers. This type of waste is termed "unique" as it will not be produced on a regular basis and therefore its management will be on special arrangement with a registered waste handler for the specific waste that is produced. However, separate space will be provided within the Proposed Development to handle and manage this waste, through battery recycling boxes, fluorescent lighting tube 'coffins', and other applicable storage containers (e.g. if a liquid is to be stored, even within its own container, this will need to be stored within a second container which holds 110% capacity of the volume of the liquid being stored). Separate arrangements will be made for the storage and safe disposal of these waste streams, as covered by the Hazardous Waste Regulations. It is envisioned that unique waste arisings generated by the Proposed Development will be minimal.

#### Operational Waste & Recycling Management Plan



#### 4.5 Waste Storage Area Design

In accordance with BS 5906:2005 all waste containers will be stored under cover in specially designed waste storage rooms, or stores, which will be built to the same general standard for both domestic and commercial premises. The walls and roofs of these stores will be formed of non-combustible, robust, secure and impervious material, and have a fire resistance of one hour.

- All containers for waste, including recyclable material, will be easily accessible to both the occupier and waste collector;
- Waste stores will be designed and located in such a way as to limit potential noise disturbance to residents;
- Storage areas for waste and MDR will be clearly designated for this use only, by a suitable door or wall sign and, where appropriate, with floor markings;
- Waste storage sites will include areas for instructional signage detailing correct use of the facilities;
- The entrance of the waste storage room will be free from steps and projections;
- Where the area is to be enclosed in a roofed building, adequate ventilation will be provided. Permanent
  ventilators will be provided giving a total ventilation area of not less than 0.2m<sup>2</sup>;
- Contain electrical lighting by means of sealed bulkhead fittings (housings rated to IP65 in BS EN 60529:199 for the purpose of cleaning down with hoses and inevitable splashing. Luminaires will be low energy light fittings or low energy lamp bulbs, controlled by proximity detection or a time delay button to prevent lights being left on; and
- Gullies for wash down facilities will be positioned so as not to be in the track of container trolley wheels.

In addition to the above requirements, past experience and best practice for the storage of waste materials will include the following provisions:

- Waste storage facilities will not block any utility service points;
- Waste storage areas will not obstruct sight lines for pedestrians, drivers and cyclists, if doors open outwards they will not open onto a road or highway;
- Waste containers will be inside or at least enclosed. If bins are outside, they will be secured in a compound;
- Information packs will be provided to residents to include full information on available recycling facilities;
- Colour coding will be used for bins of different streams; and Any internal storage areas adjacent to a fire escape route will be fitted with fire doors, automatic fire detection and a sprinkler system and comply with the Building Regs.
- The facilities management company will be required to maintain the bins and their WSAs in good condition. All
  residents should be made aware of the waste segregation requirements and waste storage arrangements.



#### 5.0. Waste Collection Requirements

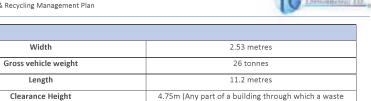
In line with BS 5906:2005 and South Dublin Bye Laws 2018 guidance, the following collection requirements have been designed into the Proposed Development in order to comply with all mandatory waste storage requirements:

#### 5.1 South Dublin County Council Bye Laws 2018

- separate receptacles of adequate size and number are provided for the proper segregation, storage and collection of recyclable household kerbside waste and residual household kerbside waste
- additional receptacles are provided for the segregation, storage and collection of food waste where this practice is a requirement of the national legislation on food waste,
- the receptacles referred to in paragraphs (a) and (b) are located both within any individual apartment and at the place where waste is stored prior to its collection,
- any place where waste is to be stored prior to collection is secure, accessible at all times by tenants and other occupiers and is not accessible by any other person other than an authorised waste collector,
- written information is provided to each resident or other occupier about the arrangements for waste separation, segregation, storage and presentation prior to collection,
- an authorised waste collector is engaged to service the receptacles referred to in this section of these byelaws, with documentary evidence, such as receipts, statements or other proof of payment, demonstrating the existence of this engagement being retained for a period of no less than two years. Such evidence shall be presented to an authorised person within a time specified in a written request from either that person or from another authorised person employed by South Dublin County Council,
- receptacles for kerbside waste are presented for collection on the designated waste collection day,
- · adequate access and egress onto and from the premises by waste collection vehicles is maintained.

#### 5.2 BS 5906:2005

• All paths used to transport bins from the storage area to the collection point will have a minimum width of 2m, be free from kerbs or steps, have a solid foundation and be finished with a smooth, continuous finish. Based on the clearance height and tonnage specified by the dimensions of a standard refuse vehicle have been used to undertake the swept path analysis.


#### Operational Waste & Recycling Management Plan

Width

Length

**Clearance Height** 

Dimensions



|                           | collection vehicle passes must have a minimum clear  |
|---------------------------|------------------------------------------------------|
|                           | height of 4.75 m, to allow for overhead fixtures and |
|                           | fittings)                                            |
| Turning Circle (diameter) | 9.5 metres                                           |

Table 12 Collection Vehicle Dimensions: Waste/Recycling Collection Vehicle



#### 6.0 CONCLUSION

The Proposed Development will be sustainable with high standards of waste management performance. As such, due consideration has been given to waste generated by the Proposed Development during its operation. Waste management within the Proposed Development has the following aims:

- To contribute towards achieving current and long-term government, South Dublin County Council and EMR targets for waste minimisation, recycling and reuse;
- To allow that all legal requirements for the handling and management of waste during the operation of the Proposed Development are complied with; and
- To provide residents and commercial users with convenient, clean and efficient waste management systems that enhance the operation of the buildings and promote high levels of recycling.

Once operational, the Proposed Development is anticipated to produce approximately 90,222L of waste from all land uses per week. Of this total, 81,136L will be generated by the residential elements and 9,086L will be generated by the commercial/communal/creche elements. Residential waste storage allows for a weekly (seven day) storage capacity for MDR, food, glass and residual (i.e. nonrecyclable). Residential bins will be provided within dedicated storage rooms within the core of each residential block. On the day of collection, the waste collection company will be able to access the Site and collect refuse from dedicated collection areas.

Separate storage will be provided for commercial MDR, glass, food waste (if applicable to final land use) and residual waste within the curtilage of each unit and within dedicated combined bin stores. Additional capacity will also be provided to take into account missed collections due to bank holidays, industrial action, vehicle failure and adverse weather conditions. All waste arisings will be stored in bins proportionate to the volume of waste produced. Furthermore, the commercial waste management element of this Strategy has been developed to allow for a degree of flexibility to address any alterations in future waste arisings as a result of commercial land use changes. These provisions will result in the handling of waste produced by the Proposed Development once it is complete and operational in accordance with SDCC Waste Bye-Laws 2018, *Waste Management (Food Waste) Amendment Regulations 2015 (S.I. No. 190 of 2015)* and the *European Union (Household Food Waste and Bio-Waste) Regulations 2015 (S.I. No. 191 of 2015)*.

In summary, this OWRMP presents a waste strategy that complies with all legal requirements, waste policies and best practice guidelines and demonstrates that the required storage areas have been incorporated into the design of the development.

# 14 ARCHAEOLOGY AND CULTURAL HERITAGE - APPENDICES

## 14.1 SMR/RMP SITES WITHIN THE SURROUNDING AREA

| DU021-037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tallaght                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tallaght                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Uppercross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Historic town of Tallaght                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c. 120m south                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| In the twelfth century Tallaght formed part of the See lands of the<br>Archbishop of Dublin and is listed among the lands confirmed to<br>Archbishop Laurence O'Toole by Pope Alexander III in 1179<br>(Sheehy 1962, I, 27). The archbishops founded a borough here<br>and an extent of 1326 mentions that there were then 15<br>burgesses rendering 15 shillings per annum (Mc Neill 1950, 181).<br>Apart from the burgesses there were also free tenants, eighteen<br>cottiers and four betaghs residing at Tallaght. It was one of the<br>most important ecclesiastical manors in County Dublin<br>throughout the Middle Ages. By the Sixteenth century it was the<br>Archbishop's principal residence outside the city (Handcock 1899,<br>11). The street pattern of the medieval borough was linear and<br>appears to have consisted simply of main street which expanded<br>at its west end to form the market place, where the road forked N<br>past St Mael Ruains church and south towards Oldbawn. The<br>archbishop's palace lay on the N side of the road and the long<br>plots on the S side are probably the remains of the medieval<br>burgage plot pattern. |
| www.archaeology.ie/ SMR file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| DU022-018001         |
|----------------------|
| RMP                  |
| Tallaght             |
| Tallaght             |
| Uppercross           |
| 709486/727859        |
| Castle - tower house |
|                      |

| Dist. From<br>Development | c. 235m south                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description               | This small tower house was located on the former entrance to the<br>village of Tallaght from Dublin. It was demolished in 1952. In 1898<br>the lower half of the tower was still standing (L 4.1m; Wth 3.6m;<br>T 1.05m). The entrance in the SE led into a partly vaulted ground<br>floor (Mc Dix 1898, 40, 157). The base of the tower was all that<br>remained in 1905 (Ball 1905, 3). There are no visible remains at<br>ground level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reference                 | www.archaeology.ie/ SMR file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SMR No.                   | DU021-037010/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>RMP Status</b>         | RMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Townland                  | Tallaght                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Parish                    | Tallaght                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Barony                    | Uppercross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I.T.M.                    | 709261/727754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Classification            | Gatehouse/Castle - unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dist. From<br>Development | c. 405m south-southwest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description               | Gatehouse – Incorporated into the present Dominican Priory, all<br>that survives of the Archbishop's palace of the later medieval<br>period is this gate house (Handcock, 1991, 32, 3rd ed). It is<br>rectangular in plan, rising to four storeys with a stair turret in NW<br>angle and an external base batter visible on the E side. It is built<br>of coursed limestone blocks with hammer dressing on the quoins<br>and windows and was considerably altered in the 19th and 20th<br>centuries. There is a vault over the ground floor, which has been<br>converted into a chapel with Gothic windows inserted. Access to<br>upper floors is from a stair turret, which is entered at ground<br>level on S side and is lit by single slit opes. A fireplace has been<br>inserted into N wall of the first floor. The interior is lit by round-<br>headed windows in the four walls, that in the W serves as a<br>doorway. The third floor has a vaulted roof running on an E-W<br>axis, which is probably modern (Ball 1899, 100; Price 1942, 39-<br>41). A stone head was found reused in one of the walls of the<br>stone stair by Sir John Lentaigne (O'Curry 1837, 31; Ball 1899,<br>101). The tooling evidence helps assign a sixteenth century date |



### ENVIRONMENTAL IMPACT ASSESSMENT REPORT VOL 2

FORMER GALLAHER'S SITE, AIRTON

|           | to the tower (Bradley & King 1988, 332), although this may just be |
|-----------|--------------------------------------------------------------------|
|           |                                                                    |
|           | evidence of later insertions into an earlier building.             |
|           | Castle – The square tower (DU021-037010-) was probably a gate      |
|           | tower to a much larger building (Bradley and King 1988, 320).      |
|           | Monk Mason's (1818) drawing shows a much more extensive            |
|           | castle complex. Handcock states that the parts of this more        |
|           | extensive castle's foundations have been found on occasion, and    |
|           | that there appears to have been an enclosing fosse (Handcock       |
|           | 1899, 29, 35; Bradley & King 1988, 331; O'Curry 1837, 32-3). The   |
|           | original castle was constructed in the first half of the early     |
|           | fourteenth century. Ball states that the castle was used as a      |
|           | garrison in the time of the Geraldine Rebellion (1905, 8).         |
| Reference | www.archaeology.ie/ SMR file                                       |

| SMR No.                   | DU021-037007/12                                                    |
|---------------------------|--------------------------------------------------------------------|
| RMP Status                | RMP                                                                |
| Townland                  | Tallaght                                                           |
| Parish                    | Tallaght                                                           |
| Barony                    | Uppercross                                                         |
| I.T.M.                    | 709238/727649                                                      |
| Classification            | Mill – unclassified/Ritual site - holy tree/bush                   |
| Dist. From<br>Development | c. 500m south-southwest                                            |
|                           | Mill – No information available.                                   |
|                           | Ritual site – There is a mature walnut tree on the grounds of the  |
| Description               | present Dominican Priory in Tallaght village on the site of the    |
|                           | Archbishop's palace. It is associated with St. Maelruain (Handcock |
|                           | 1991, 34-5).                                                       |
| Reference                 | www.archaeology.ie/ SMR file                                       |



FORMER GALLAHER'S SITE, AIRTON

## 14.2 STRAY FINDS WITHIN THE SURROUNDING AREA

Information on artefact finds from the study area in County Dublin has been recorded by the National Museum of Ireland since the late 18th century. Location information relating to these finds is important in establishing prehistoric and historic activity in the study area.

A review of the topographical files for the study area of the proposed development revealed that no stray finds have been recovered.



FORMER GALLAHER'S SITE, AIRTON

## 14.3 LEGISLATION PROTECTING THE ARCHAEOLOGICAL RESOURCE

### **Protection of Cultural Heritage**

The cultural heritage in Ireland is safeguarded through national and international policy designed to secure the protection of the cultural heritage resource to the fullest possible extent (Department of Arts, Heritage, Gaeltacht and the Islands 1999, 35). This is undertaken in accordance with the provisions of the European Convention on the Protection of the Archaeological Heritage (Valletta Convention), ratified by Ireland in 1997.

## The ARCHAEOLOGICAL RESOURCE

The National Monuments Act 1930 to 2014 and relevant provisions of the National Cultural Institutions Act 1997 are the primary means of ensuring the satisfactory protection of archaeological remains, which includes all manmade structures of whatever form or date except buildings habitually used for ecclesiastical purposes. A National Monument is described as 'a monument or the remains of a monument the preservation of which is a matter of national importance by reason of the historical, architectural, traditional, artistic or archaeological interest attaching thereto' (National Monuments Act 1930 Section 2). A number of mechanisms under the National Monuments Act are applied to secure the protection of archaeological monuments. These include the Register of Historic Monuments, the Record of Monuments and Places, and the placing of Preservation Orders and Temporary Preservation Orders on endangered sites.

### **Ownership and Guardianship of National Monuments**

The Minister may acquire national monuments by agreement or by compulsory order. The state or local authority may assume guardianship of any national monument (other than dwellings). The owners of national monuments (other than dwellings) may also appoint the Minister or the local authority as guardian of that monument if the state or local authority agrees. Once the site is in ownership or guardianship of the state, it may not be interfered with without the written consent of the Minister.

### **Register of Historic Monuments**

Section 5 of the 1987 Act requires the Minister to establish and maintain a Register of Historic Monuments. Historic monuments and archaeological areas present on the register are afforded statutory protection under the 1987 Act. Any interference with sites recorded on the register is illegal without the permission of the Minister. Two months' notice in writing is required prior to any work being undertaken on or in the vicinity of a registered monument. The register also includes sites under Preservation Orders and Temporary Preservation Orders. All registered monuments are included in the Record of Monuments and Places.

## **Preservation Orders and Temporary Preservation Orders**

Sites deemed to be in danger of injury or destruction can be allocated Preservation Orders under the 1930 Act. Preservation Orders make any interference with the site illegal. Temporary Preservation Orders can be attached under the 1954 Act. These perform the same function as a Preservation Order but have a time limit of six months, after which the situation must be reviewed. Work may only be undertaken on or in the vicinity of sites under Preservation Orders with the written consent, and at the discretion, of the Minister.

### **Record of Monuments and Places**

Section 12(1) of the 1994 Act requires the Minister for Arts, Heritage, Gaeltacht and the Islands (now the Minister for the Department of Culture, Heritage and the Gaeltacht) to establish and maintain a record of monuments and places where the Minister believes that such monuments exist. The record comprises a list of monuments and relevant places and a map/s showing each monument and relevant place in respect of each county in the state. All sites recorded on the Record of Monuments and Places receive statutory protection under the National Monuments Act 1994. All recorded monuments on the proposed development site are represented on the accompanying maps.

Section 12(3) of the 1994 Act provides that 'where the owner or occupier (other than the Minister for Arts, Heritage, Gaeltacht and the Islands) of a monument or place included in the Record, or any other person, proposes to carry out, or to cause or permit the carrying out of, any work at or in relation to such a monument or place, he or she shall give notice in writing to the Minister of Arts, Heritage, Gaeltacht and the Islands to carry out work and shall not, except in case of urgent necessity and with the consent of the Minister, commence the work until two months after giving of notice'.

Under the National Monuments (Amendment) Act 2004, anyone who demolishes or in any way interferes with a recorded site is liable to a fine not exceeding  $\leq$ 3,000 or imprisonment for up to 6 months. On summary conviction and on conviction of indictment, a fine not exceeding  $\leq$ 10,000 or imprisonment for up to 5 years is the penalty. In addition, they are liable for costs for the repair of the damage caused.

In addition to this, under the *European Communities (Environmental Impact Assessment) Regulations 1989,* Environmental Impact Statements (EIS) are required for various classes and sizes of development project to assess the impact the proposed development will have on the existing environment, which includes the cultural, archaeological and built heritage resources. These document's recommendations are typically incorporated into the conditions under which the proposed development must proceed, and thus offer an additional layer of protection for monuments which have not been listed on the RMP.

### The Planning and Development Act 2000

Under planning legislation, each local authority is obliged to draw up a Development Plan setting out their aims and policies with regard to the growth of the area over a five-year period. They cover a range of issues including archaeology and built heritage, setting out their policies and objectives with regard to the protection and enhancement of both. These policies can vary from county to county. The Planning and Development Act 2000 recognises that proper planning and sustainable development includes the protection of the archaeological heritage. Conditions relating to archaeology may be attached to individual planning permissions.

### South Dublin County Development Plan, 2016-2022

South County Dublin contains a large number of buildings, structures and sites of architectural, historic and/or artistic importance, in addition to numerous archaeological sites. This significant archaeological and architectural heritage is a valuable resource adding to the historical and cultural character of the County. The Development Plan contains policies which are intended to ensure the protection of this heritage. Village Design Statements can be utilised as a tool to guide development in smaller centres. It should be noted that archaeological sites and archaeological zones of interest are identified by a recorded monument reference number on the land use zoning maps. The recorded monument reference numbers are taken from the *Record of Monuments and Places for Dublin*, published by Department of the Environment, Heritage and Local Government.

### HCL1 Objective 1:

To protect, conserve and enhance natural, built and cultural heritage features and restrict development that would have a significant negative impact on these assets.

### HCL2 Objective 1:

To favour the preservation in-situ of all sites, monuments and features of significant historical or archaeological interest in accordance with the recommendations of the Framework and Principles for the Protection of Archaeological Heritage, DAHGI (1999), or any superseding national policy document.

### HCL2 Objective 2:

To ensure that development is designed to avoid impacting on archaeological heritage that is of significant interest including previously unknown sites, features and objects.

HCL2 Objective 3:



### ENVIRONMENTAL IMPACT ASSESSMENT REPORT VOL 2

FORMER GALLAHER'S SITE, AIRTON

To protect and enhance sites listed in the Record of Monuments and Places and ensure that development in the vicinity of a Recorded Monument or Area of Archaeological Potential does not detract from the setting of the site, monument, feature or object and is sited and designed appropriately.

### HCL2 Objective 4:

To protect and preserve the archaeological value of underwater archaeological sites including associated features and any discovered battlefield sites of significant archaeological potential within the County.

### HCL2 Objective 5:

To protect historical burial grounds within South Dublin County and encourage their maintenance in accordance with conservation principles.



### ENVIRONMENTAL IMPACT ASSESSMENT REPORT VOL 2

FORMER GALLAHER'S SITE, AIRTON

## 14.4 IMPACT ASSESSMENT AND THE CULTURAL HERITAGE RESOURCE

### **Potential Impacts on Archaeological and Historical Remains**

Impacts are defined as 'the degree of change in an environment resulting from a development' (Environmental Protection Agency 2017). They are described as profound, significant or slight impacts on archaeological remains. They may be negative, positive or neutral, direct, indirect or cumulative, temporary or permanent.

Impacts can be identified from detailed information about a project, the nature of the area affected and the range of archaeological and historical resources potentially affected. Development can affect the archaeological and historical resource of a given landscape in a number of ways.

- Permanent and temporary land-take, associated structures, landscape mounding, and their construction may result in damage to or loss of archaeological remains and deposits, or physical loss to the setting of historic monuments and to the physical coherence of the landscape.
- Archaeological sites can be affected adversely in a number of ways: disturbance by excavation, topsoil stripping and the passage of heavy machinery; disturbance by vehicles working in unsuitable conditions; or burial of sites, limiting accessibility for future archaeological investigation.
- Hydrological changes in groundwater or surface water levels can result from construction activities such as de-watering and spoil disposal, or longer-term changes in drainage patterns. These may desiccate archaeological remains and associated deposits.
- Visual impacts on the historic landscape sometimes arise from construction traffic and facilities, built earthworks and structures, landscape mounding and planting, noise, fences and associated works. These features can impinge directly on historic monuments and historic landscape elements as well as their visual amenity value.
- Landscape measures such as tree planting can damage sub-surface archaeological features, due to topsoil stripping and through the root action of trees and shrubs as they grow.
- Ground consolidation by construction activities or the weight of permanent embankments can cause damage to buried archaeological remains, especially in colluviums or peat deposits.
- Disruption due to construction also offers in general the potential for adversely affecting archaeological remains. This can include machinery, site offices, and service trenches.

Although not widely appreciated, positive impacts can accrue from developments. These can include positive resource management policies, improved maintenance and access to archaeological monuments, and the increased level of knowledge of a site or historic landscape as a result of archaeological assessment and fieldwork.

### **Predicted Impacts**

The severity of a given level of land-take or visual intrusion varies with the type of monument, site or landscape features and its existing environment. Severity of impact can be judged taking the following into account:

- The proportion of the feature affected and how far physical characteristics fundamental to the understanding of the feature would be lost;
- Consideration of the type, date, survival/condition, fragility/vulnerability, rarity, potential and amenity
  value of the feature affected;
- Assessment of the levels of noise, visual and hydrological impacts, either in general or site-specific terms, as may be provided by other specialists.



FORMER GALLAHER'S SITE, AIRTON

## 14.5 MITIGATION MEASURES AND THE CULTURAL HERITAGE RESOURCE

### Potential Mitigation Strategies for Cultural Heritage Remains

Mitigation is defined as features of the design or other measures of the proposed development that can be adopted to avoid, prevent, reduce or offset negative effects.

The best opportunities for avoiding damage to archaeological remains or intrusion on their setting and amenity arise when the site options for the development are being considered. Damage to the archaeological resource immediately adjacent to developments may be prevented by the selection of appropriate construction methods. Reducing adverse effects can be achieved by good design, for example by screening historic buildings or upstanding archaeological monuments or by burying archaeological sites undisturbed rather than destroying them. Offsetting adverse effects is probably best illustrated by the full investigation and recording of archaeological sites that cannot be preserved *in situ*.

### **Definition of Mitigation Strategies**

### **Archaeological Resource**

The ideal mitigation for all archaeological sites is preservation *in situ*. This is not always a practical solution, however. Therefore, a series of recommendations are offered to provide ameliorative measures where avoidance and preservation *in situ* are not possible.

Archaeological Test Trenching can be defined as 'a limited programme of intrusive fieldwork which determines the presence or absence of archaeological features, structures, deposits, artefacts or ecofacts within a specified area or site on land, inter-tidal zone or underwater. If such archaeological remains are present field evaluation defines their character, extent, quality and preservation, and enables an assessment of their worth in a local, regional, national or international context as appropriate' (CIFA 2014a).

*Full Archaeological Excavation* can be defined as 'a programme of controlled, intrusive fieldwork with defined research objectives which examines, records and interprets archaeological deposits, features and structures and, as appropriate, retrieves artefacts, ecofacts and other remains within a specified area or site on land, inter-tidal zone or underwater. The records made and objects gathered during fieldwork are studied and the results of that study published in detail appropriate to the project design' (CIFA 2014b).

Archaeological Monitoring can be defined as 'a formal programme of observation and investigation conducted during any operation carried out for non-archaeological reasons. This will be within a specified area or site on land, inter-tidal zone or underwater, where there is a possibility that archaeological deposits may be disturbed or destroyed. The programme will result in the preparation of a report and ordered archive (CIFA 2014c).

*Underwater Archaeological Assessment* consists of a programme of works carried out by a specialist underwater archaeologist, which can involve wade surveys, metal detection surveys and the excavation of test pits within the sea or riverbed. These assessments are able to access and assess the potential of an underwater environment to a much higher degree than terrestrial based assessments.

